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Dynamics of Multilayered
Composite Plates With Shape
Memory Alloy Wires
In this paper certain aspects of the dynamic behavior of a multilayered, composite
with shape memory alloys (SMA) wires have been investigated. The influence of p
eters such as the orientation and location of SMA wires, the orientation and rela
volume fraction of reinforcing fibers, the thickness-to-length and length-to-width ra
and different boundary conditions, on changes in the critical load, the natural frequen
and the modes of vibrations of the plate have all been studied and discussed in the
The use of two different techniques, generally known in the literature as the active
erty tuning and active strain energy tuning methods, has also been investigated
results presented in this paper have been obtained by the use of the finite element m
and a new finite element formulated for multilayered composite plates has been ap
for this purpose.@DOI: 10.1115/1.1546263#
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Introduction
The use of different composite materials has been continuo

growing in recent years. Although many applications for comp
ite materials have been identified, extensive research is still b
carried out in order to expand this field. New materials and te
nologies have been researched, enabling more original and
advanced applications. One such new application is the inte
tion of shape memory materials within composite materials.

Shape memory alloys~SMAs! possess the inherent ability t
change their material properties, in particular their Young’s mo
lus, @1,2#, damping capacity,@3,4#, as well as a great capacity fo
the generation of large internal forces,@5#. Integrating SMAs
within composite material structures potentially allows the act
control of the static and dynamic behavior of the integrated str
ture. Precise tuning of SMA components,@6,7#, enables the con-
trol of certain static and dynamic characteristics of composite
terial structures, notably deflection and shape, natural frequen
and modes of vibrations, amplitudes of forced vibrations, and a
their damping properties. SMA components embedded into
bonded to, composite material structures can be utilized in
different ways. The first implementation is in the use of the act
property tuning method,@6,7#, which only exploits changes in th
stiffness of the SMA components during their activation. In t
active strain energy tuning method,@6,7#, the shape memory effec
is exploited differently. In this technique the activation of prev
ously pseudo-plastically elongated SMA components integra
within appropriate composite material structures of interest, le
to the generation of high recovery stresses.~See Table 1.!

Various applications for using integrated SMA-composite co
ponents have been investigated by several researchers and
been published in the literature. For example, Rogers et al.@6#
presented concepts for using SMA wires for the control of natu
frequencies and modes of vibrations of simply supported pla
Both the active property tuning and active strain energy tun
methods were considered in their work. They also discussed
different techniques for bonding SMA wires to composite stru

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 2
2001; final revision, June 10, 2002. Associate Editor: N. C. Perkins. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
Copyright © 2Journal of Applied Mechanics
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tures. For the active property tuning method SMA wires can
directly bonded to the host structure, while for the active str
energy tuning method they can be fully bonded, or put in
sleeves and then attached to the host structure at strategic p
in order to eliminate the high shearing stresses which arise f
this form of activation. Rogers et al.@6# showed that significant
changes in natural frequencies and modes of vibration can
achieved for simply supported plates with integrated SMA wir
and also stated that the use of the active strain energy tu
method leads to much better results than the use of the ac
property tuning method. Changes in natural frequencies of fu
clamped composite beams with integrated SMA wires were inv
tigated analytically and experimentally by Baz et al.@8#. Baz et al.
showed that SMA wires embedded into composite beams ca
successfully used for controlling their natural frequencies. T
influence of different initial strain levels, as well as temperatu
effects due to the activation of the SMA wires, were also cons
ered in their study. Baz et al.@9# also investigated the use of SMA
components for shape control of composite beams. They dem
strated that SMA components in the form of strips, previou
trained for the two-way shape memory effect, and then embed
into composite beams, can be used for the shape control of
structures. The natural frequencies of composite beams mod
in this manner were also significantly affected. Lee and Lee@10#
investigated the buckling and post-buckling behavior of sim
supported and fully clamped composite plates with embed
SMA wires. They found that SMA wire activation can increase t
critical load of composite plates, but this effect is a function of t
relative location of the SMA wires, and also the buckling dire
tion. Pae et al.@11# used SMA wires and piezoceramic actuato
for controlling the modes of vibrations of simply supported a
cantilevered beams. Using compressive forces generated by
SMA wires and concentrated moments from the piezoceramic
tuators they managed to control the higher vibration modes o
cantilever beam and also the second mode of vibration of a sim
supported beam. Song et al.@12# used SMA wires for active po-
sition control of a honeycomb structure composite beam. T
demonstrated, numerically and experimentally, that SMA wi
can be used for very accurate and effective monitoring of
beam shape, in the case of a cantilever boundary condition. O
chowicz et al.@13,14# studied the dynamic and buckling behavi
of various composite plates, reinforced by SMA wires. They s
cessfully confirmed that SMA wires can be used to influence
natural frequencies and the thermal buckling of such structu
Ostachowicz and Cartmell@15# investigated the flutter behavior o
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a composite plate in a supersonic airflow. In their work th
showed that substantial modifications can be achieved to the
namic behavior of the plate by means of the SMA wires, and a
that flutter frequencies of the plate can be significantly increa

Results presented in the literature indicate many possible a
cations for SMA components in the active control of the static a
dynamic behavior of composite material structures. Howeve
more detailed study is required for a complete and rigorous
derstanding of this behavior because the results presented i
literature invariably refer to somewhat specific cases. This, th
fore, is the motivation behind this paper.

Continuing with this review of appropriate literature it is inte
esting to note that Rogers et al.@6# only examined SMA/epoxy
composite plates, for which the relative volume fraction of SM
wires was very high. The behavior of such plates is determined
the high ratio of the Young’s modulus of the SMA to that of th
epoxy matrix, and also by the high relative volume fraction of t
SMA wires. The same assumption regarding the high relative
ume fraction of SMA components was made by Baz et al.@9#,
who investigated glass/epoxy composite beams with embed
SMA strips. Furthermore, Baz et al.@8,9# investigated composite
beams of very low thickness-to-length ratio. Although such str
tures are characterized by very good static and dynamic pe
mance when the SMA components are activated, they tend to
very few engineering applications due to their low stiffness a
low critical loads. Lee and Lee@10# studied the buckling and
post-buckling behavior of composite plates with embedded S
wires, for which the assumed values for activation recov
stresses were very close to their ultimate tensile strength.

From the foregoing it can be seen that the static and dyna
behavior of composite material structures with embedded S
components strongly depends on the following factors;
Young’s modulus of the SMA to the Young’s modulus of the r
inforcing fibers~glass, Kevlar, graphite, boron, etc.!, the relative
volume fraction of the SMA components, the relative volum
fraction of the reinforcing fibers, structural geometry, and the
cation and orientation of the SMA components within their h
structures, temperature, moisture, etc. It should be noted that
trary to Rogers et al.@6# and Baz et al.@9#, for most advanced
composite materials the ratio of the SMA Young’s modulus to t
of the reinforcing fibers is low—see Table 1 for reference,@16–
18#. Moreover, the high relative volume fraction of the SMA com
ponents is not really desirable due to the fact that the ther
effect of resistive heating during SMA activation is very likely
result in the softening of the composite material. However, t
effect can be easily avoided by an appropriate selection of
SMA transformation temperatures, which can normally be
justed accurately. For commonly available SMAs~refer to Shape
Memory Application, Inc. at http://www.sma-inc.com! the trans-
formation temperatures can remain within a fully controllab
temperature range from as low as253°C to25°C to as high as
59°C to 121°C, with a total hysteresis span of 26°C to 46°C in
case of binary alloys. The hysteresis span can be further red
to 10°C by the addition of copper, or, alternatively, enhanced
100°C by the addition of niobium, together with further alloyin

In this paper the finite element method has been used to in

Table 1 Mechanical properties of composite material compo-
nents and SMA wires

Material Young’s Modulus Poisson’s Ratio Density

Epoxy resin 3.43GPa 0.35 1250.0 kg/m3

Aluminum 70.0 GPa 0.33 2800.0 kg/m3

Glass fibers 65.5 GPa 0.23 2250.0 kg/m3

Kevlar fibers 130.0 GPa 0.22 1450.0 kg/m3

Graphite fibers 275.6 GPa 0.20 1900.0 kg/m3

Boron fibers 399.6 GPa 0.21 2580.0 kg/m3

SMA—Martensite 26.3 GPa 0.30 6448.1 kg/m3

SMA—Austenite 67.0 GPa 0.30 6448.1 kg/m3
314 Õ Vol. 70, MAY 2003
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tigate certain aspects of the dynamic behavior of a multilaye
composite plate with embedded SMA wires. In order to acco
plish this a new finite element is proposed for modeling multila
ered, composite plates—see the Appendix for more details
should be noted that although all the mechanical influences m
tioned previously have been incorporated into the modeling, th
mal and hygrothermal effects have not been taken into accoun
this study. It is fair to say that in some practical applications the
additional effects could have a significant influence on the beh
ior. For the research presented in this paper thermal and hy
thermal phenomena were neglected mainly due to the fact tha
necessary physical properties for this sort of analysis relating
different composite material components are not currently av
able in the literature, and provision of this data was well outs
the scope of this particular funded study.

Composite Plate With SMA Wires
Figure 1 shows a multilayered composite plate with embedd

SMA wires. This particular plate is of length 500 mm, width 50
mm, and thickness 9 mm, although these dimensions are by
means critical. It is assumed that the plate consists of 12 layer
composite material, comprising, in turn, of two SMA/epoxy laye
and ten graphite/epoxy layers. The orientation of the reinforc
graphite fibers and the SMA wires for each layer is defined by
anglea. It is also assumed that the SMA/epoxy layers are plac
symmetrically across the cross section of the plate, as depicte
Fig. 1, in the form of two outer layers. The thickness of ea
SMA/epoxy layer is 0.5 mm, and the corresponding relative v
ume fraction of the SMA wires is 0.57. Additionally, the SMA
wires stay fully bonded within each SMA/epoxy layer of the plat
The relative volume fraction of the graphite fibres within the inn
graphite/epoxy layers is 0.5, and the thickness of each graph
epoxy layer is 0.8 mm. The ply stacking sequence of the plat
@0°/(645°)5/0°#.

Initially a convergence analysis was carried out whereby
results obtained from the finite element method using the n
formulated multilayered composite plate element, were verifi
against the exact solution,@16,19#, for different mesh densities
Simply supported boundary conditions of the plate~i.e., where all
the edges are simply supported! were chosen to carry out this tes
The first six bending natural frequencies of the plate, as well
the critical load in thex-direction, were investigated as a functio
of the mesh density. It was assumed that the SMA wires sho
not be activated in this particular case. The results obtained
presented in Table 2.

It can be seen from the results presented in Table 2 that a v
good accuracy is obtained at relatively low mesh densities for

Fig. 1 A multilayered composite plate with embedded SMA
wires
Transactions of the ASME



Table 2 An analysis of the convergence of the finite element results for a simply supported plate „SMA wires not activated …

Mesh Density Mode I Mode II Mode III Mode IV Mode V Mode VI Ncrit
1!

232 179.28 Hz 417.06 Hz 422.83 Hz 741.94 Hz 763.69 Hz 938.27 Hz 2540.28 kN/m
333 178.60 Hz 408.23 Hz 414.31 Hz 710.36 Hz 756.11 Hz 772.93 Hz 2536.63 kN/m
434 178.39 Hz 407.54 Hz 413.65 Hz 706.31 Hz 750.25 Hz 767.25 Hz 2535.37 kN/m
535 178.29 Hz 407.21 Hz 413.32 Hz 704.53 Hz 749.98 Hz 767.03 Hz 2534.81 kN/m
636 178.24 Hz 407.03 Hz 413.14 Hz 703.62 Hz 749.74 Hz 766.82 Hz 2534.52 kN/m
737 178.22 Hz 406.92 Hz 413.04 Hz 703.10 Hz 749.58 Hz 766.67 Hz 2534.34 kN/m
838 178.20 Hz 406.85 Hz 412.97 Hz 702.77 Hz 749.48 Hz 766.58 Hz 2534.23 kN/m
939 178.18 Hz 406.80 Hz 412.92 Hz 702.55 Hz 749.41 Hz 766.52 Hz 2534.15 kN/m

10310 178.17 Hz 406.77 Hz 412.89 Hz 702.40 Hz 749.37 Hz 766.47 Hz 2534.10 kN/m
Exact CPT2! 179.06 Hz 411.37 Hz 417.65 Hz 716.26 Hz 764.57 Hz 782.51 Hz 2539.09 kN/m
Exact FSDT3! 178.19 Hz 406.97 Hz 413.09 Hz 702.65 Hz 750.37 Hz 767.52 Hz 2533.87 kN/m

1!Ncrit is the critical load of the plate calculated in thex-direction
2!Classical plate theory@20,21#
3!First-order shear deformation theory@20,21#
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Fig. 2 Modes of vibration of a simply supported plate „SMA
wires not activated …

Fig. 3 Modes of vibration of a two-sided-clamped plate „SMA
wires not activated …

Fig. 4 Modes of vibration of a fully clamped plate „SMA wires
not activated …
Journal of Applied Mechanics
proposed new plate finite element. Because of this the follow
calculations have been undertaken for the plate divided up into
plate finite elements~mesh density 838!.

In general three different types of plate boundary conditions
discussed in this paper, these being simply supported~i.e., where
all the edges are simply supported!, two-sided clamped~i.e.,
where the two edges parallel to they-axis are clamped!, and fully
clamped~i.e., where all the edges are clamped!. The results of the
numerical calculations presented in this work are related to p
ticular modes of plate vibration, and these are presented in F
2–4 for each type of boundary condition. The performance of
active property tuning method and the active strain energy tun
method are also critically compared. In the case of the ac
strain energy tuning method the assumed recovery stress leve
the SMA wires is equal to 172.1 MPa~after Dynalloy, Inc.—
http://www.dynalloy.com!. Certain mechanical properties used f
the graphite/epoxy composite and the SMA wires are presente
Table 1. It should be mentioned here that the relative quantitie
the natural frequencies and the critical loads~noting that only the
critical load of the plate in thex-direction is investigated! pre-
sented in this paper, are defined as ratios of the values of t
quantities, calculated for the plate when the SMA wires are a
vated~for both the active property tuning method and the act
strain energy tuning method, respectively!, to the corresponding
values when the SMA wires are not activated.

Numerical Calculations
In the first numerical example the natural frequencies and

critical load of the plate are investigated as a function of pl
dimensions. The numerical results obtained for the active prop
tuning method, and the active strain energy tuning method,
different values of the length-to-width ratios,L/B, of the plate are
illustrated in Figs. 5–7 inclusive. It should be mentioned th
during the calculations the total area of the plate stays constan
the total mass of the plate is also constant and remains unaffe
by changes in the plate dimensions. From the results present
Figs. 5–7 it is clearly seen that for the simply supported type
boundary condition greater relative changes in the plate’s nat
frequencies, and the critical load, are observed towards sm
length-to-width ratios,L/B. In the case of the two-sided-clampe
boundary condition the observed behavior is different. A grea
general plate performance can be noted for larger values of
length-to-width ratios,L/B.

However, it should also be appreciated that for both types
boundary conditions those natural frequencies for which the no
lines of the modes are perpendicular to the orientation angle of
SMA wires are the most significantly affected. These are mode
and mode VI for the simply supported plate, and mode I and m
IV for the two-sided-clamped plate~also see Figs. 2–3 for more
details!. Furthermore, for the active strain energy tuning meth
the changes in the natural frequencies and the observed cr
load are bigger than for the active property tuning method, and
MAY 2003, Vol. 70 Õ 315
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Fig. 5 Natural frequencies of a „a… simply supported and „b… two-sided-clamped, plate versus the length-
to-width ratio „active property tuning method …
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lower modes are the most noticeably affected ones. Additiona
for the simply supported plate certain changes in the buck
modes can be observed, as depicted in Fig. 7. In this case
buckling mode of the plate changes from mode I to mode III~see
Fig. 2!, when the length-to-width ratioL/B increases. It should be
emphasized here that for the case when the SMA wires are
activated the transition point between the modes is point
whereas it is point B when the SMA wires are activated. T
transition of the buckling mode influences the relative critical lo
of the plate, and this increases rapidly over the transition reg
due to the change in the buckling mode. Such behavior is
observed in the case of the two-sided-clamped plate.

In the following example the influence of the relative pla
thicknessH/L is investigated. It is assumed that the thickness
the inner graphite/epoxy layers can vary, while the thickness
the outer SMA/epoxy layers remains constant. The results of
merical calculations for the relative changes in the natural
quencies and the critical load, as a function of the relative p
thicknessH/L, are given in Figs. 8–10 inclusive. For both met
l. 70, MAY 2003
lly,
ing
the
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ods the results show a strong influence of the thickness-to-le
ratio H/L on the natural frequencies and the critical load of t
plate. The performance of the plate~greater relative changes in th
natural frequencies and the critical load! is greater for smaller
thickness-to-length ratios, and this is related to the fact that w
the thickness of the inner graphite/epoxy layers decreases
stiffness of the outer SMA/epoxy layers becomes dominant. T
effect is especially strong at very small thickness-to-length ra
of the plate. Moreover, it should also be noted in this case that
the active strain energy tuning method the changes in the na
frequencies and the critical load, in general, are greater than
the active property tuning method. An additional influence in t
form of boundary condition dependence is observed.

The next example concerns the influence of the volume frac
of the reinforcing graphite fibers on the plate’s dynamic behav
A general assumption of this part of the work is that the proper
of the outer SMA/epoxy layers remain constant, whilst the relat
volume fraction of the reinforcing graphite fibers in the inn
graphite/epoxy layers have been allowed to vary.
Transactions of the ASME
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Fig. 6 Natural frequencies of a „a… simply supported and „b… two-sided-clamped, plate versus the length-
to-width ratio „active strain energy tuning method …
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In Figs. 11–13 results are illustrated for relative changes in
natural frequencies and the critical load of the plate. The num
cal calculations show that for both the active property tuning a
active strain energy tuning methods the plate performance
creases when the relative volume fraction of the graphite fib
within the inner graphite/epoxy layers decreases. This effec
directly linked to the ratio of the longitudinal Young’s modulus
the outer SMA/epoxy layers to the same quantity for the in
graphite/epoxy layers. In the case when the relative volume f
tion of the graphite fibres is low, or equal to zero, the stiffne
contribution of the outer SMA/epoxy layers of the plate becom
predominant, and the observed changes in the natural freque
and the critical load are therefore maximal.

The influence of the orientation angle of the reinforcing grap
ite fibers on the natural frequencies and the critical load of
plate is investigated next. It is assumed here that the orienta
anglea of the graphite fibers within the inner graphite/epoxy la
ers can vary, while the properties of the outer SMA/epoxy lay
remain constant. In this case the constant value of 90° is assu
f Applied Mechanics
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for the orientation angle of the graphite fibers between subseq
inner graphite/epoxy layers. The ply stacking sequence of
plate can therefore be defined as@0°/(a/(a190°))5/0°#. The
results presented in Figs. 14–16 show the influence of the or
tation anglea of the reinforcing graphite fibres on changes in t
natural frequencies and the critical load for two boundary con
tion of the plate considered. It is obvious from the results state
Figs. 14–16 that for the chosen ply stacking sequence the pe
mance of the plate varies with the modes of vibration and the t
of boundary conditions. Generally, the greatest performance~the
greatest relative changes in the natural frequencies and the cr
load! is obtained for the modes whose nodal lines are perpend
lar to the orientation angle of the SMA wires within the out
SMA/epoxy layers of the plate. Consequently, the smallest per
mance is obtained for the modes whose nodal lines are parall
that reference~see also Figs. 3–4 for more details!.

Additionally, in the case of the active strain energy tuni
method a further increase in the plate performance is obta
from the in-plane load generated by the recovery stresses du
MAY 2003, Vol. 70 Õ 317



318 Õ Vo
Fig. 7 The critical load of a „a… simply supported and „b… two-sided-clamped plate versus the length-to-
width ratio
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activation of the SMA wires. However, this additional increase
the plate performance mostly affects the first natural frequenc

Finally, a study has been made of the influence of the loca
of the SMA wires within the plate. In this case the mechani
properties of each SMA/epoxy and graphite/epoxy layer rem
constant. However, it is assumed that the location of the SM
epoxy layers within the plate can be changed. The relative lo
tion of the SMA/epoxy layers changes from the extreme ou
layer to the central one, and this corresponds to a change in
ply stacking sequence of the plate from@0°/(645°)5/0°# to
@(645°)2/45°/(0°)2 /245°/(645°)2#, respectively. In Figs.
17–19 inclusive results are quoted for the relative changes in
natural frequencies and the critical load, as a function of the r
tive location of the SMA wires,h/H.

From these results it arises that the location of the SMA wi
within the plate has a major influence on the plate’s behavior.
greatest performance is observed when the SMA wires are fi
within the extreme layers of the plate. When the SMA wires
incorporated within the central layers of the plate changes in
l. 70, MAY 2003
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natural frequencies and the critical load of the plate are minim
This effect is related to the fact that the bending contribution
each layer of the plate increases rapidly with the distance betw
the layer and the neutral plane of the plate. For this reason
extreme layers of the plate give the greatest stiffness contribut
However, it should be noticed that the stiffness of the graph
epoxy layers is usually greater than the stiffness of the SM
epoxy layers, which leads to a slight reduction in the natural f
quencies and the critical load.

Furthermore, the influence of SMA activation on changes to
modes of the plate is also investigated, and here it is also assu
that the properties of the inner graphite/epoxy layers remain c
stant, while the orientation anglea of the SMA wires within the
outer SMA/epoxy layers is assumed to be equal to 0 deg and
deg, respectively. This corresponds to a ply stacking sequenc
@0°/(645°)5/90°#. In this case only the active property tunin
method is investigated and the results presented in Fig. 20 s
that the activation of the SMA wires in either the upper or low
layers of the plate has a very definite influence on the pla
Transactions of the ASME
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Fig. 8 Natural frequencies of a simply supported plate versus the relative plate thickness „active prop-
erty tuning method …
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behavior. However, in the case of the two-sided-clamped plate
influence of the activation of the SMA wires is observed, and t
differs from the case of the simply supported and fully clamp
type of boundary conditions. Active control of plate vibratio
modes can be achieved by selective activation of the SMA w
in different plate layers, and this phenomenon is evident from F
20. The activation of the upper or lower SMA/epoxy layers sho
a changeover between certain twin modes of vibration in the fo
of mode II and mode III, mode V and mode VI, mode VII an
mode VIII, etc. Moreover, the observed changes in the mode
vibrations occur practically at the same natural frequency. In
case considered only two SMA/epoxy layers for vibration cont
of the plate are used, but more extensive control vibration mo
can be realised by the use of numerous SMA/epoxy layers, di
ently placed within the plate.
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Conclusions

The influence of different parameters on the dynamic beha
of a multilayered composite plate with embedded SMA wir
have been investigated in this paper. The research carried u
this program has led to the following general conclusions:

1. In general, greater dynamic performance in terms of rela
changes in the natural frequencies and the critical load of the p
is observed for the active strain energy tuning method than for
active property tuning method. The performance of the plate is
only a function of vibration modes, but is also a function of t
boundary conditions. The greatest changes in the natural freq
cies and the critical load are observed not for the lowest mode
vibration, but generally for those modes where the nodal lines
Fig. 9 Natural frequencies of a simply supported plate versus the relative plate thickness „active strain
energy tuning method …
MAY 2003, Vol. 70 Õ 319
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Fig. 10 The critical load of a simply supported plate versus the relative plate thickness
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perpendicular to the orientation angle of the SMA wires. T
behavior can be explained by the fact that changes in the pla
stiffness due to activation of the SMA wires are maximal in t
direction of the SMA wires. This is so in the case of the act
property tuning method and also for the active strain energy
ing method. Consequently, the most significant affected modes
those for which most of vibration energy is associated with
plate motion in the direction of the SMA wires. For the acti
strain energy tuning method the in-plane load resulting from a
vation of the SMA wires additionally influences the lowest natu
frequencies of the plate, principally the fundamental natural
quency of the plate. The number of constraints imposed by dif
ent types of boundary conditions also influences the results.
more flexible types of boundary conditions a smaller number
constraints can be imposed, and then both the natural freque
and the critical load of the plate are necessarily lower. This me
that the influence of the SMA generated in-plane load in the c
70, MAY 2003
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of active strain energy tuning is greater. As a consequence
greatest changes in the natural frequencies and the critical loa
observed in the case of the two-sided-clamped type of bound
condition, whilst the lowest changes are observed in the cas
the fully clamped type of boundary condition.

It is likely that in practice the use of the active strain ener
tuning method will be limited. This is because additional SM
boundary conditions are required~noting that these are indepen
dent of the structural boundary conditions! in order to produce the
necessary tensile recovery stresses during SMA activation. If
condition is not met then the recovery stresses produced du
SMA activation will be compressive, and may greatly reduce
natural frequencies and the critical load of the structure. Mo
over, high recovery stresses~and these could be tensile o
compressive! produced during SMA activation may also genera
high shearing stresses within the structure, thereby leading
damage.
Fig. 11 Natural frequencies of a two-sided-clamped plate versus the relative volume fraction of graphite
fibers „active property tuning method …
Transactions of the ASME
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Fig. 12 Natural frequencies of a two-sided-clamped plate versus the relative volume fraction of graphite
fibers „active strain energy tuning method …
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In contrast with this the natural frequency and critical lo
changes generated by the active property tuning method wil
smaller than those due to active strain energy tuning. There
the active property tuning method provides a potentially sa
methodology for the application of SMA wires in the active co
trol of the dynamic behavior of composite structures. It is imp
tant to note that the active strain energy tuning method can
sibly be successfully used for shape control of compo
structures, as long as certain define disadvantages are under
and accounted for. On that basis it is prudent to recommend
the active strain energy tuning method probably requires fur
investigation.

3. The dynamic performance of the multilayered compos
plate is not only a function of the modes of vibration but also
function of the boundary conditions that are operative. For
multilayered composite plate the changes observed in the na
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frequencies and the critical load are, additionally, a function of
orientation of the SMA wires, as well as the length-to-width ra
of the plate.

4. In the case of the multilayered composite plate, the grea
performance~in terms of the greatest relative changes in the na
ral frequencies and the critical load! is observed for the mode
whose nodal lines are perpendicular to the orientation angle of
SMA wires. This allows selective, as well as economical, use
SMAs for active control of the dynamics of composite mater
structures. The SMA wires can be orientated within a structure
the most effective way, affecting only the necessary and relev
natural frequencies and modes.

The use of the active strain energy tuning method has an a
tional influence on the lowest natural frequencies and the co
sponding modes, and thus the performance of the plate ca
increased.
Fig. 13 The critical load of a two-sided-clamped plate versus the relative volume fraction of graphite
fibers
MAY 2003, Vol. 70 Õ 321
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Fig. 14 Natural frequencies of a „a… two-sided-clamped and „b… fully clamped, plate versus the orientation
angle of graphite fibers „active property tuning method …
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5. The dynamic behavior of the multilayered composite pl
also depends on the orientation of the reinforcing graphite fib
However, it should be noted that structural components mad
composite materials are commercially available in sheet form,
which the orientation angle of the reinforcing fibers is determin
by the manufacturing process and it is possible to obtain diffe
quasi-isotropic composite material sheets in the@0°/90°# layout
from certain commercial outlets. For that reason the use of
particular parameter for dynamic optimization is greatly limite
Some influence can be achieved by the optimal choice of the
stacking sequence.

6. For both the active property tuning and active strain ene
tuning methods the results presented in this paper show tha
thickness-to-length ratio is highly influential, as is the relati
volume fraction of the reinforcing graphite fibers. However,
needs to be appreciated that in most engineering application
thickness-to-length ratio of composite structural elements is p
cipally determined by the lowest natural frequency, or the criti
load, of the structure.
l. 70, MAY 2003
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The relative volume fraction of the reinforcing fibres is al
limited by commercially available structural composite comp
nents, for which the relative volume fraction of the reinforcin
fibers varies from 0.4 to 0.6. These values determine many ap
cations for which the SMA wires can be successfully used in
form proposed in this paper.

7. The location of the SMA wires has great significance for t
dynamic behavior of the composite multilayered composite pla
The greatest performance is observed when SMA wires are
cated in the outer layers of the beam and plate; however,
natural frequencies and the critical load are slightly reduced
these cases. It is worth noting that when the SMA wires are
cated within the inner layers, close to the neutral plane of the p
for example, then the natural frequencies and the critical load
not much affected. This is because the SMAs add little or
contribution to the plate stiffness. Additionally, strong thermal
fects can be observed due to heat transfer, resulting in comp
material softening during activation of the SMAs for locatio
Transactions of the ASME
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Fig. 15 Natural frequencies of a „a… two-sided-clamped and „b… fully clamped plate versus the orientation
angle of graphite „active strain energy tuning method …
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within the neutral plane of the plate. When the SMA wires a
located within the outer layers of a structure the thermal effect
not likely to be as strong due to better cooling conditions.

8. It has successfully been shown that SMA wires can be u
for active control of the modes of vibrations of the compos
multilayered composite plate. The observed behavior shows
activation of the SMA wires in different layers of the plate enab
interesting changeovers between certain twin modes of vibrati
Moreover, by the use of numerous layers whereby the SMA w
are placed differently within the plate more extensive modal c
trol can be achieved. However, it should be noted that succes
active modal control can only be performed for certain types
plate boundary conditions.
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Appendix
In this paper a new multilayered composite plate finite elem

is proposed, as shown in Fig. 21. The element has eight nodes
seven degrees-of-freedom at each node. These degrees-of-fre
are defined as the longitudinal in-plane displacementsu andv, the
transverse displacementw, the rotationswx and wy due to the
transverse displacementw, and the independent correction rot
tions ux anduy for the rotationswx andwy , and due to shearing
effects. The length of the element isL, the width isB, and the
thickness isH. In general the element consists ofN layers made
up of a unidirectional composite material. In the case of the an
sis presented in this paper these are two SMA/epoxy layers
ten graphite/epoxy layers. Reinforcing fibers~SMA wires,
graphite fibres! are arbitrarily orientated within the layers, an
MAY 2003, Vol. 70 Õ 323
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Fig. 16 The critical load of a „a… two-sided-clamped and „b… fully clamped plate versus the orientation
angle of graphite fibers
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their orientation anglea is measured within thex-y plane of the
element

The displacement field within the element is assumed to b
follows, according to first-order shear deformation theory,@20,21#:

5
u~x,y,z!5u0~x,y!1z•wx~x,y!1z•

H

L
•ux~x,y!

v~x,y,z!5v0~x,y!1z•wy~x,y!1z•
H

B
•uy~x,y!

w~x,y,z!5w0~x,y!

(1)

where u0(x,y) and v0(x,y) are the longitudinal displacement
with w0(x,y) being the transverse displacement of the plate e
ment defined within the neutral plane of the plate. The rotati
wx(x,y) andwy(x,y) of the element can be expressed as the ne
tive first partial derivatives of the transverse displacem
w0(x,y), respectively. Under this assumption the displacem
field within the element takes the following form:
l. 70, MAY 2003
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5
u~x,y,z!5u0~x,y!2z•]xw0~x,y!1z•

H

L
•ux~x,y!

v~x,y,z!5v0~x,y!2z•]yw0~x,y!1z•
H

B
•uy~x,y!

w~x,y,z!5w0~x,y!

(2)

Utilizing known finite element techniques and using bounda
conditions for the nodal displacements of the element, the sh
functions of the element can be easily derived,@21,22#. It can be
seen that the nodal degrees-of-freedom which are assumed fo
element allow an improved approximation for the transverse
placementw0(x,y). For the longitudinal in-plane displacemen
u0(x,y) and v0(x,y), and the independent correction rotatio
ux(x,y) anduy(x,y) second-order approximation polynomials a
used, as in the case of the classical plate finite element, on
Transactions of the ASME
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Fig. 17 Natural frequencies of a fully clamped plate versus the relative position of SMA wires „active
property tuning method …
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assumption of first-order deformation theory. However, for
transverse displacementw0(x,y) higher-order approximation
polynomials can be used.

For small displacement theory the strains,@20#, within the ele-
ment can be expressed as

¦

«x5]xu02z•]x,xw01z•
H

L
•]xux

«y5]yv02z•]y,yw01z•
H

B
•]yuy

gxy5]yu01]xv022z•]x,xw01z•
H

L
•]yux1z•

H

B
•]xuy

gxz5]zu1]xw5
H

L
•ux

gyz5]zv1]yw5
H

B
•uy

.

(3)
Applied Mechanics
he It can be seen that for small thickness-to-length ratios the
placement and strains fields of the new element are consis
with Kirchhoff plate theory, while for higher thickness-to-leng
ratios influence from shearing strains is included. The finite e
ment proposed here is characterized by better dynamic and s
behavior than the classical plate finite element, and as a co
quence of this no locking effects are observed.

Stresses within thenth layer of the element consisting ofN
layers of a unidirectional composite material can be expresse
Eq. ~4!, where matrixQn is the matrix of elastic coefficients, an
has a very well-known structure,@23#. It should be noted that the
elements of matrixQn depend on the relative volume fractions
composite material components, and also on the orientation o
reinforcing fibers within the layer~for details see, for example
@20,23#!.

col@sx ,sy ,sxy ,sxz ,syz#n5Qn•col@«x ,«y ,«xy ,«xz ,«yz#n
(4)
Fig. 18 Natural frequencies of a fully clamped plate versus the relative position of SMA wires „active
strain energy tuning method …
MAY 2003, Vol. 70 Õ 325
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Fig. 19 The critical load of a fully clamped plate versus the relative position of SMA wires
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Fig. 20 The influence of SMA wire activation on the vibration
modes of a simply supported plate „active property tuning
method …
0, MAY 2003
From this application of the well-known procedures of the fin
element method,@21,22#, means that the characteristic mass m
trix, stiffness matrix, and also the geometrical stiffness matrix
the element can be easily obtained.

It should be noted here that in the case of the active prope
tuning method the results obtained~natural frequencies, the criti-
cal load, or modes of vibrations! correspond to the case whe
activation of the SMA wires within the SMA/epoxy layers lead
only to changes in the element stiffness matrix, while the m
matrix of the element remains unaffected. The same also app
to the global stiffness and mass matrices. In the case of the ac
strain energy tuning method, however, besides changes in th
ement stiffness matrix, the in-plane load resulting from the ac
vation of the SMA wires within the SMA/epoxy layers is als
taken into account by means of the element geometrical stiffn
matrix. In both cases the solution procedure used in the pape
analogous to that presented in@13,14#.

Fig. 21 The proposed new multilayered composite plate finite
element
Transactions of the ASME
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Multiscale, Multiphenomena
Modeling and Simulation
at the Nanoscale: On Constructing
Reduced-Order Models
for Nonlinear Dynamical Systems
With Many Degrees-of-Freedom
The large number of degrees-of-freedom of finite difference, finite element, or mole
dynamics models for complex systems is often a significant barrier to both efficient
putation and increased understanding of the relevant phenomena. Thus there is a b
to constructing reduced-order models with many fewer degrees-of-freedom that reta
same accuracy as the original model. Constructing reduced-order models for linea
namical systems relies substantially on the existence of global modes such as eigen
where a relatively small number of these modes may be sufficient to describe the res
of the total system. For systems with very many degrees-of-freedom that arise from s
discretization of partial differential equation models, computing the eigenmodes t
selves may be the major challenge. In such cases the use of alternative modal m
based upon proper orthogonal decomposition or singular value decomposition
proven very useful. In the present paper another facet of reduced-order modeli
examined, i.e., the effects of ‘‘local’’ nonlinearity at the nanoscale. The focus is on na
cale devices where it will be shown that a combination of global modal and local disc
coordinates may be most effective in constructing reduced-order models from b
conceptual and computational perspective. Such reduced-order models offer the po
ity of reducing computational model size and cost by several orders of magni
@DOI: 10.1115/1.1558079#
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Introduction
In the theoretical and computational modeling of nanoscale

vices and phenomena, e.g., nanooscillators and crack propag
in solids, recent work,@1,2#, has emphasized the benefits of
appropriate blend of finite element continuum models, molecu
dynamics models, and quantum mechanical models. The mo
tion for creating such multiscale models is clear. On the one h
continuum models fail to describe the phenomena of interes
certain regions of nanoscale devices or of crack tips, for exam
and must be replaced by molecular or quantum models. But on
other hand computational cost prohibits the use of molecula
quantum models over the entire computational domain of the
vice or phenomena. Thus continuum~finite element! models are
required over most of the computational domain to keep the c
putation manageable and are entirely adequate to describe
physical behavior of the device in those regions. Yet molecula
quantum effects must be modeled in some smaller, yet crit
regions.

There are two major questions that arise in blending two d
tinct conceptual and computational models, e.g., a finite elem
continuum model with a molecular dynamics model. One ques
is, how do we choose the two spatial regions, i.e., the continu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec.
2001; final revision, Sept. 25, 2002. Associate Editor: A. K. Ferri. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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region and the molecular dynamics region? This is currently d
based upon the anticipated behavior of the response, i.e., it
pends on one’s experience and is essentially a matter of g
judgment. The second question is, how does one consistently
correctly connect the two distinct computational models at
interface between the two spatial regions? The work of@1,2# and
references cited therein is largely devoted to answering this la
question. And significant progress has been made, although a
tain amount of judgment and numerical experimentation is s
required to answer this question using current methodologies

In the present paper, a new approach is proposed that is
computationally effective and rigorously addresses both questi
In the present approach, the total model is initially based upon
finer scale model, e.g., molecular dynamics, but then a continu
approximation is extracted from this model for those portions
the spatial region where such an approximation is appropri
Moreover, since the methodology permits one to choose any d
sion of the total computational domain into a continuum region
the one hand and say a molecular dynamics region on the o
one may rapidly simulate the model response for different cho
of continuum and molecular dynamics regions to determine
optimum choice of computational subdomains.

As will be seen the methodology has a certain feature wh
permits a check for self-consistency as to whether the continu
approximation may be used in a given portion of the compu
tional domain. And of course the method is very computationa
efficient, by virtue of creating a~substantially! reduced-order
model. We expect computational advantages for the propo
method comparable to those recently achieved for computati
fluid dynamics~CFD! models where the number of degrees-o

9,
the
nt of
ara,
nal
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freedom and associated computational costs have been decr
by several orders of magnitudefor complex systems withweak
global nonlinearities,@3#, using reduced-order models. In this p
per, the challenge of addressing eitherweakor strong local non-
linearities is addressed.

The construction of reduced-order models for nonlinear s
tems can be treated in the abstract, but some insight into
physical effects of the nonlinearity will often suggest, if not di
tate, the most effective approach to take. When the nonlineari
distributed globally over the spatially domain, effective tec
niques have been revised to construct reduced-order mo
@3–12#. In this paper we consider a representative system wi
strong local nonlinearity. It is a one-dimensional system wi
many discrete nonlinear spring/masses or nonlinear force l
such as those that arise in molecular dynamics. The goal i
develop a local discrete model near the termination of the spr
mass or molecular system to provide detailed information in t
region while using a modal representation to describe the mo
of the system sufficiently for away from the termination regio
This model may be thought of as combining the most attrac
features of a complementary particle/wave~eigenmode! descrip-
tion of the overall model. This approach is attractive for eithe
linear or a nonlinear model in the termination region, but is es
cially useful for the latter.

Application of this model to material specimens that a
stretched by an atomic force microscope~AFM! is a nanoscale
device of significant current interest,@13#. Also this method may
be extended to two or three dimensions where such models m
be used to describe crack propagation, for example@1,2#. If these
extensions prove successful, and success is not guaranteed
approach will open new research frontiers for the rational des
of nanoscale devices and the analysis of nanoscale phenome

The readers attention is also drawn to the interesting work
Burton et al.@14# and Friswell et al.@15# who also discuss issue
of reduced order modeling in related, but distinct contexts.

Reduced-Order Models for Nonlinear Systems With
Strong Local Nonlinearities

We begin with a simple spring model, before turning to
nanoscale molecular dynamics model per se.

Analysis of a Wave-Particle Model for a One-Dimensional
Model With Discrete MassesÕNonlinear Springs. In Fig. 1 the
spring-mass system is shown. The ‘‘springs’’ may arise from m
croscale or macroscale forces. Now consider this system as b
decomposed into two systems; one~a! is composed of particles
and the other~b! is composed of waves~eigenmodes!. Of course
the waves or eigenmodes of system~b! may be found by starting
from a particle description and then determining the eigenmo
of system~b!. So there is a particle/wave duality here, but it
entirely in terms of classical mechanics for this example. T
wave or eigenmode description for system~b! will be advanta-
geous when the spatial/temporal resolution needed is global ra
than local and the number of eigenmodes required is much sm
than the number of particles in system~b!.

Fig. 1 A one-dimensional, discrete spring-mass system
Journal of Applied Mechanics
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The kinetic and potential energies for the entire system~a1b!
may be written as

T5
1

2 (
i 51

I

M i ẋi
2 (1)

U5
1

2 (
i 51

I

Ki~xi2xi 11!2. (2)

Note that in Eq.~2!, xI 1150 for the example shown in Fig. 1
i.e., theI 11 mass is fixed in the wall on the right-hand side a
does not move.

And the virtual work may be expressed as

dW5(
i 51

I

Fidxi . (3)

For simplicity of exposition, in the following only free vibra
tion is considered, i.e.,Fi[0. Now consider system~b! by itself.
For system~b! each mass and spring is assumed to be identica
simplicity and, more importantly, the spring is linear. In Fig. 2 t
first two natural frequencies~eigenvalues! for this system are
shown as a function of the total number of masses and spri
Nb . The limit asNb approaches infinity may be thought of as th
discrete system approaching a continuum model and the eigen
ues have been appropriately scaled to display this limit m
clearly. Note that if only the lower eigenmodes for system~b! are
needed, a relatively small number ofNb is sufficient to model the
system even if the actual number ofNb is very large. This is the
advantage of a finite element or finite difference representatio
system~b! starting from a continuum model; but now the equiv
lent result is seen here from a different perspective, i.e., as a w
or eigenmode description of a discrete system with many degr
of-freedom.

System~b! is now represented in terms of its~lower! eigen-
modes for any value ofNb . Thus takingbn to be the generalized
coordinates associated with an eigenmode expansion of the
tion, one has the following expressions for kinetic and poten
energy:

Tb5
1

2 (
n51

Nb8!Nb

ḃn
2Mn

b

(4)

Fig. 2 Natural frequencies of first two modes for various total
number of particles, Nb , in system „b…. Note: Natural frequen-
cies are scaled by multiplication by Nb so that a finite asymp-
tote is reached as Nb\`, corresponding to a continuum limit.
MAY 2003, Vol. 70 Õ 329



l

w

t

t
a

w

e

n

i

dy-
ut
-

p-

o

rify

puta-
ct

de-

em
rly

rdi-

a

s

an
of

e if
on-
in
lin-
stem

For
dily
the
h a
ous

gs,
ous
ents
rela-
Ub5
1

2 (
n51

Nb8!Nb

bn
2~vn

b!2Mn
b .

By contrast, however, system~a! is modeled with discrete loca
coordinates. We first consider system~a! in the linear approxima-
tion and then we will consider the nonlinear case.
System (a) is linear:

System ~a! is represented as a discrete set of masses
springs. Indeed for purposes of illustration, let system~a! be a
single spring-mass with kinetic and potential energies as follo

Ta5
1

2
M1

a~ ẋ1
a!2

(5)

Ua5
1

2
K1

a~x1
a2x2

a!2.

Of course, the mass of system~b! immediately adjacent to tha
of system~a! is the first mass of system~b!. And thus there is a
constraint condition that describes the connection between
tems~a! and ~b!, viz.,

x2
a5x1

b . (6)

If the dynamics of system~b! are now expressed in terms of i
eigenmodes, thenxi

b may be written in terms of the eigenmod
coordinates for system~b! as follows:

xi
b5(

n
Einbn (7)

where @E# is a matrix whose columns are the eigenvectors
system~b!. And in particular,

x1
b5(

n
E1nbn . (8)

Defining

f [x2
a2(

n
E1nbn (9)

then the constraint equation that expresses the connection bet
systems~a! and ~b! is simply

f 50. (10)

From Lagrange’s equations using a Lagrange multiplier to
force the constraint condition, the equations of motion for syst
~a1b! are

Mn
b@ b̈n1~vn

b!2bn#2lE1n50 (11)

M1
aẍ1

a1K1
a@x1

a2x2
a#50 (12)

2K1
a@x1

a2x2
a#1l50. (13)

The dynamical response unknowns arex1
a , x2

a , bn , and l
which are determined by solving Eqs.~10!–~13!.

One can put this set of equations for system~a1b! in a standard
eigenvalue form by eliminating the variablesl andx2

a using Eqs.
~10! and ~13! and reducing the set of equations to the determi
tion of the unknowns,x1

a andbn . This new set of equations is thu

Mn
b@ b̈n1~vn

b!2bn#2E1nK1
aFx1

a2(
m

E1mbmG50 (14)

M1
aẍ1

a1K1
aFx1

a2(
m

E1mbmG50. (15)

Of course, Eqs.~14! and ~15! are coupled among the coord
nates,x1

a and bn , but the number ofbn is usually dramatically
reduced by a truncation of eigenmodes of system~b!.
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System (a) is nonlinear:
The present approach is particularly advantageous if the

namics of system~a! are governed by nonlinear relationships, b
system~b! is entirely linear,@14,15#. For example, consider a non
linear spring connecting system~a! to system~b!. Then the poten-
tial energy might be represented as

U5
1

2
K11

a ~x1
a2x2

a!21
1

4
K31

a ~x1
a2x2

a!4. (16)

Using this expression and following through on the develo
ment of the equations of motion as before, it is seen that Eqs.~10!
and~11! are unchanged, but Eqs.~12! and~13! are now nonlinear
in the unknownsx1

a andx2
a . Even so one may obtain a solution t

these equations by time marching Eqs.~11! and ~12! for x1
a , bn ,

using Eq.~10! to determinex2
a at each time step in terms ofbn and

Eq. ~13! to determinel at each time step in terms ofx1
a andx2

a .
For the nonlinear case, Eqs.~12! and ~13! become explicity

M1
aẍ1

a1K11
a ~x1

a2x2
a!1K31

a ~x1
a2x2

a!350 (12)

2K11
a ~x1

a2x2
a!2K31

a ~x1
a2x2

a!31l50. (13)

Although this is not pursued here, the reader may readily ve
that had the~linear! eigenmodes of the combined~a1b! system
been used to describe the system, the conceptual and com
tional difficulty with such an approach when including the effe
of the nonlinearity would be substantially greater than that
scribed above.

If the goal is to determine the free vibrations of such a syst
and one is content with a single harmonic, then a particula
simple and direct result can be obtained,@16,17#. Omitting details
it is simply noted that it is advantageous to define a new coo
nate which is the stretching of the nonlinear spring, viz

Dx[x1
a2x2

a (17)

and replace the two unknownsx1
a and x2

a with x1
a and Dx. Also

note that Eqs.~12!NL and ~13!NL can be combined to produce
single linear equation in terms ofDx andl. From Eqs.~B1!, ~B2!,
~12!NL and ~13!NL the governing equation for the free vibration
becomes

2K11
a Dx2K31

a ~Dx!31Dxv2M1
aY

F12v2M1
a(

n

E1n
2

Mn
b@2v21~vn

b!2#G50. (18)

The solution for the nonlinear frequencies of free vibration c
be effected by plotting the right-hand side and left-hand side
Eq. ~18! versus frequency,v, for a chosen amplitude,Dx, and
determining their intersection.

Note that after the solution is obtained one may check to se
the solution has significant nonlinear response in either the n
linear spring per se or in any of the nominal linear springs. If
fact a nominally linear spring has a response that exceeds its
ear response range, then that spring must be transferred to sy
~a! and re-analysis and re-simulation must be done.

Discussion and Generalization
A few generalizations of this example are now discussed.

example, the specific form for the potential energy can be rea
replaced by any well-behaved function of the stretching of
spring. Also the one-dimensional model may be replaced wit
two or three-dimensional model. In both cases results analog
to the above are readily obtained including Eq.~18! if only a
single nonlinear spring is present. For multiple nonlinear sprin
although the formalism goes through, the number of analog
equations becomes larger as the number of nonlinear elem
increases. Yet the present approach will still be advantageous
Transactions of the ASME
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tive to either including coordinates for each spring mass in s
tems~a! and ~b! on the one hand or using the eigenmodes of
combined system~a1b! on the other. Here we briefly discuss th
formulation for the one-dimensional model using the Lenna
Jones potential, a well-known model often used in molecular
namics,@18#. The extensions to two and three dimensions are
to future work.

Theoretical Model. The Lennard-Jones potential has the fo
lowing form:

U5Cr0
nF r i

m2n

r m 2
1

r nG (19)

wherer is the distance between mass particles,C has the dimen-
sions of energy,r i is the value ofr for which U50, and without
loss of generality one may also selectr 05r i .

It will be of interest to determine the value ofr 5r s for which
]U/]r 50 that arises in the static equilibrium or confirmation o
system of particles. Using~19!, r s may readily be determined a
follows:

r s

r i
5S m

n D 1/~m2n!

. (20)

For typical values, saym512 andn56,

r s

r i
521/6. (21)

Also the value of]2U/]r 2 when r 5r s will be of interest. It is
found to be

]2U

]r 2 U
r 5r s

5Cri
22@m~m11!a2m222n~n11!a2n22# (22)

where

a[
r s

r i
5S m

n D 1/~m2n!

(23)

and again form512 andn56,

]2U

]r 2 U
r 5r s

5Cri
22@183221/3#. (24)

Consider now the static equilibrium of a one-dimensional ar
of masses~recall Fig. 1! whose potential energy is now describe
by the Lennard-Jones potential. Furthermore a ‘‘nearest neigh
approximation will be used~a commonly invoked assumption i
treating the statics and dynamics of many particle systems!. This
assumption leads to simple results, but perhaps more importa
the results may be used in an iteration process to account for m
neighbor potential energy interactions, if desired.

Now the total potential energy of the one-dimensional array
particles using the nearest neighbor assumption is

UT5U~r 1!1U~r 2!1U~r 3!1 . . . . (25)

where

r 15x1 , r 25x22x1 , r 35x32x2 . . . . (26)

Here it is convenient to use a numbering system for the m
particles that starts with the mass nearest the ‘‘wall’’ or fix
point. See Fig. 1. Note this numbering system is reversed f
that of the previous ‘‘spring’’ example.

The conditions of static equilibrium are of course that

]UT

]xi
50 for i 51,2,3, . . . . (27)

and using Eqs.~25! and Eq.~26!
Journal of Applied Mechanics
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]UT

]x1
5

]U

]r 1
2

]U

]r 2
. (28)

Similar expressions are obtained for]UT /]xi until the last
mass,xI , is considered. For the last mass

]UT

]xI
5

]UT

]r I
50. (29)

But Eq. ~29! implies that

xI2xI 215r s (30)

recalling Eq.~20!. But from Eq.~29! and the preceding equatio
for ]U/]xI 21 one infers that

]UT

]r I 21
50 and xI 212xI 225r s (31)

and eventually that

]UT

]r 1
50 and x15r s . (32)

Thus the static equilibrium values ofxi are

xi5xis[ ir s for i 51,2, . . .N (33)

and it is seen that each ‘‘spring’’ is stretched more than the pre
ous one in proportion to its ‘‘distance’’ from the ‘‘wall.’’

Next, turn to the dynamic equations of motion. These of cou
are of the form~assuming for simplicity of exposition that a
masses are equal, though this assumption is not essential t
proposed method!.

mẍi1
]UT

]xi
50 for i 51,2, . . .I . (34)

First consider small dynamic perturbations about the st
equilibrium positions or confirmation. Then, for example,

]UT

]x1
5

]UT

]r 1
2

]UT

]r 2
. (35)

But using a Taylor Series and the ansatzx15x1s1 x̂1 , etc., one
determines that

(36)

and similarly

(37)

Note, however, that

]2U

]r 1
2 U

x15x1s

5
]2U

]r 2 U
r 5r s

5
]2U

]r 2
2 U

x15x1s ,x25x2s

. (38)

Thus

]U

]x1
5

]2U

]r 2 U
r 5r s

@2x̂12 x̂2# (39)

from Eqs.~35!–~38!. And the first mass~furthest from the ‘‘wall’’!
equation of motion becomes

mẍ̂11
]2U

]r 2 U
r 5r s

@2x̂12 x̂2#50. (40)
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From a similar calculation the equation of motion for the se
ond mass is

mẍ̂21
]2U

]r 2 U
r 5r s

@2x̂22 x̂12 x̂3#50. (41)

The equations of motion for the other masses are similar ex
for the mass furthest from the ‘‘wall’’ whose governing equation

mẍ̂I1
]2U

]r 2 U
r 5r s

@ x̂I2 x̂I 21#50. (42)

Finally, now consider the last ‘‘spring’’ or potential to be non
linear. As with the previous examples, think of the other line
‘‘springs’’ and associated masses as being modeled by their ei
modes. Again this is called system~b!. System~a! is the last mass
furthest from the wall with its associated nonlinear ‘‘spring’’ o
potential.

As before one may determine the eigenmodes for system~b!
using the dynamic small perturbation equations of motion, E
~40!–~42!. Think now of adding a nonlinear mass/spring~poten-
tial! with coordinatesxI 11

a and xI
a , i.e., system~a!. The kinetic

and potential energies of system~a! are

Ta5
1

2
m~ ẋI 11

a !2 (43)

Ua5U~xI 11
a 2xI

a! (44)

and the constraint equation that connects system~a! to system~b!
is

xI
a5xI

b . (45)

As before the dynamics ofxi
b , i 51,2, . . .I are to be repre-

sented by a small number of dominant eigenmodes of system~b!.
Employing the Lagrange multiplier formalism, one obtains
small number of equations to represent the combined nonlin
system in terms of the~dominant! eigenmodes of system~b! and
an individual particle description of system~a!. These choices are
both conceptually and computationally compact as well as con
nient. As was true for the previous example, the equations
motion are linear in the modal coordinates of system~b! and also
the Lagrange multiplier that represents the force of constraint
connects system~a! and system~b! through the enforcement of th
constraint, Eq.~45!. However, the coordinates of system~a!, xI 11

a

and xI
a or, more particularly, the difference of these two,xI 11

a

Fig. 3 Schematic diagram of macromolecular chain model
with AFM measurement system
332 Õ Vol. 70, MAY 2003
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a , will appear in a nonlinear form. Recall Eq.~18! from
the previous nonlinear ‘‘spring’’ example. The details are d
scribed in Appendix B.

Numerical Example. As is well known, the rupture force o
single covalent bonds under an external load can be meas
with an atomic force microscope~AFM!. In the present numerica
example, a polysaccharide macromolecular chain with 101 at
is considered and the last atom is covalently attached to the A
tip which is mounted on a cantilever beam and the first atom
attached to a substrate surface. A schematic diagram of this m
is shown in Fig. 3. For details of this experimental model, see R
@19#. Here this experimental model is simulated using molecu
dynamics and a reduced order model. We assume that the
strate surface is excited by a single harmonic motion,A0 sinvt
whereA0 and v are the excitation amplitude and frequency.
Fig. 3, the AFM cantilever beam base~tip probe! can be moved to
change the distance,L, between the tip and the substrate surfa
Also the deflection of cantilever beam,d, will be changed with a
change inL. The cantilever beam has a spring constant ofks

50.58 kg/s2 and the beam mass isms .
For the present example, the Lennard-Jones potential is g

by

U~r !54eF S s

r D 12

2S s

r D 6G
with experimentally determined parameterss50.34 nm and
e50.0104 eV.

In this example, for illustrative purposes, we assume the A
tip probe is removed from the macromolecular chain and there
does not attach to the macromolecular chain, i.e,L is large enough
that the last mass,mI , of the chain is free. This example is used
examine the utility of the reduced-order model. The dynamic
sponse of this system is calculated using Eqs.~35!–~45!.

When the tip probe is moved close to the last mass of
macromolecular chain and it is covalently attached to the AFM
of the cantilever beam and~the boundary condition! of the last
mass,mI , is constrained by its attachment to the cantilever be
~AFM!. Results for this case will be reported separately in anot
paper.

• Normal static equilibrium position
As described before, for the present example, the normal s

equilibrium position of the macromolecular chain isxi5 ir s , i
51,2, . . .I , and I 5101. See Eq.~33!. r s50.382 nm or 21/6s
corresponding to]U/]r 50.

Fig. 4 Nonlinear interatomic force versus the interatomic
separation, r Õs
Transactions of the ASME
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Fig. 5 Dynamic response of the macromolecular chain for A 0 ÕsÄ3.5 and mÄ0.01
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Two alternative equations of motion, a perturbation~linearized!
equation and a full nonlinear equation are derived. For a sm
dynamic perturbation about the static equilibrium position,
linear ‘‘spring’’ stiffness of the chain isk15k25 . . . 5kI5ke and
the interatomic force is modeled as linear. The linearized stiffn
ke , is determined by

ke5
]2U

]r 2 U
r 5r s

50.803 kg/s2.

For the full nonlinear equation of motion, the interatomic for
is nonlinear. The nonlinear interatomic force,f N , is determined
by

f N5
]U

]r
52

4e

s F12S s

r D 13

26S s

r D 7G .
Figure 4 shows the nonlinear interatomic force versus the in

atomic separation,r /s. In this figure the linear ‘‘spring’’ stiffness
of the chain, i.e., the slope of the curve at the static equilibri
position, r s , is also shown. The small dynamic perturbati
theory is effective over a small, but nontrivial, range ofr /s, as
will be seen.

• Small dynamic perturbations
The macromolecular chain can be modeled as a dynamic

turbation linear system when the interatomic force is lineariz
about the static equilibrium position, but as a nonlinear sys
when the full interatomic~Van der Waal’s! force is used as in Fig
4. The equations are normalized by the length factor,s, and a time
factor, 1/V whereV2[24e/s2m and m is the atom mass of the
macromolecular chain. The nondimensional time ist5Vt and the
nondimensional frequency ism5v/V. A viscous damping force
f viscous, is added to the chain that is assumed to be of the fo
f viscous52jmV ẋ with j taken to be 0.01. Here we consider th
molecular chain to be immersed in a viscous fluid.

Figure 5 shows a typical dynamic response using the pertu
tion linear equations and also the original nonlinear equations
a nondimensional excitation frequency,m50.01 and a base exci
tation amplitude ofA0 /s53.5. Figure 5~a! shows the dynamic
response at the free end versus the nondimensional time,t. The
solid line indicates the results from the linearized equations
the broken line is for the results from the nonlinear equations.
two results are close, but not identical.

Another ~intermediate! model can be constructed in which
nonlinear force representation is used near the free end of
chain and a linear model is used near the substrate end. Re
using a 90% and 30% nonlinear force model~when 90% or 30%
rnal of Applied Mechanics
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of the force laws are nonlinear and the remainder are linear! are
also plotted in Fig. 5~a! for comparison. Figure 5~b! shows the
rms deflection amplitude for each atom of the macromolecu
chain. The atom static equilibrium position is normalized byr s
and is measured from the substrate surface. The agreemen
tween the full nonlinear and full linear results is on the who
good, but there are detailed differences. For the partial nonlin
model the results are between the full nonlinear and the full lin
cases, as expected.

However, whenA0 /s increases, e.g.,A0 /s55 and m50.01,
the results from linear and nonlinear models can be quite diffe
as shown in Fig. 6 for the response time history at the free e
The perturbation theory is no longer accurate. But more sign
cantly the nonlinear model shows a diverging oscillation indic
ing the chain is ‘‘breaking’’ for such a large amplitude excitatio

Figures 7~a!,~b! show the rms deflection amplitude for eac
atom of the macromolecular chain form50.05, A0 /s50.1 and
m50.2, A0 /s50.075, respectively. There is reasonably go
agreement between the linear and nonlinear models in the s
interatomic separation range, i.e., for smallr /r s . The agreement
between the two models generally improves for smallerA0 /s and
smallerm.

One can define a total rms error, err, as follows:

Fig. 6 Time history at free end for A 0 ÕsÄ5 and mÄ0.01
MAY 2003, Vol. 70 Õ 333
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Fig. 7 RMS amplitude of the macromolecular chain
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wherexi ,nonlinearis the rms amplitude ofith atom of the macromo-
lecular chain from the nonlinear model, andxi , linear is the rms
amplitude ofith atom from the perturbation linear model.

To illustrate the nature of the threshold dependence of the
turbation theory, results for the total rms error versus excitat
amplitude,A0 /s, are shown in Fig. 8 for several different exc
tation frequencies,m50.01, 0.05, and 0.2. The effective range
the perturbation linear model increases asm andA0 /s decrease.
For less than 10% error, the maximumA0 /s is 3.65 form50.01;
0.75 for m50.05 and 0.1 form50.2, respectively. Note the rapi
change in error withA0 /s at certain critical threshold values.

To better understand the critical threshold values, consider
nondimensional deflection response between the last two at
i.e., r I /s5(xI2xI 21)/s, versust as shown in Fig. 9~a! for
A0 /s53.65 andm50.01; Fig. 9~b! for A0 /s50.75 andm50.05;
and Fig. 9~c! for A0 /s 0.1 andm50.2. Note that the nondimen
sional peak response amplitude forr I /s is nearly the same for the

Fig. 8 Total rms error versus excitation amplitude, A 0 Õs for
different excitation frequency, mÄ0.01, 0.05, and 0.2
Õ Vol. 70, MAY 2003
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three different combinations ofA0 /s and m. This suggests tha
the threshold levels observed in Fig. 9 all correspond to a crit
value of r I /s, i.e., approximatelyr I /s50.02.

• Reduced-order model with quasi-static correction
Now consider the construction of a reduced-order model for
example. For simplicity and illustration purposes, system~b! is
chosen to be linear with 100 degrees-of-freedom and system~a! is
nonlinear with one degree-of-freedom, i.e., a nonlinear Van
Waal’s force betweenxI andxI 21 . For system~b!, the eigensolu-
tion is calculated and the eigenvalues are shown in Fig. 10 as
nondimensional natural frequency,v i /V, versus the eigenmode
number. The lowest nondimensional natural frequency,v1 /V, is
0.0154.

Recalling Eqs.~40!–~42!, for the system~b!, the dynamic per-
turbation equations are rewritten in matrix form:

@M #$ ẍ̂%1@K#$x̂%5$ f ~ t !% (46)

where$ f (t)%T5$k1A0 sinvt,0,0, . . . 0%T. Let

x̂5 x̂Qs1x9 (47)

where x̂Qs is the quasi-static response andx9 is a small dynamic
response. The quasi-static response is defined to be that whe
inertia terms,ẍ̂, ~and also the damping terms! are neglected. From
Eqs.~46! and ~47!, we thus have

x̂Qs5@K#21$ f ~ t !% (48)

and

@M #x9̈1@K#$x9 %52@M #$ ẍ̂Qs%. (49)

Following the modal analysis described in the Appendix B, o
obtains a reduced-order model forx9 with a quasi-static correction
~QSC! for x̂Qs . When using Eqs.~48! and ~49!, note that the
initial conditions are x̂u t5050 and ẋ̂u t5050, and thusx9 u t50

5 x̂Qsu t5050, andx9̇ u t5052 ẋ̂Qsu t50 .
Figure 11 shows a typical dynamic response using the redu

order model approach with and without quasi-static correct
and, for reference, the response determined from the full orig
nonlinear equations form50.01 andA0 /s50.1. Also, for refer-
ence, a result from a full perturbation linear model, i.e., using
modes in system~b! and a linear perturbation model for syste
~a!, was obtained. For the chosen values ofA0 /s andm this result
was the same as for the full nonlinear model. Figure 11~a! shows
the dynamic response at the free end of the chain versus the
dimensional time,t. The solid line indicates the result when a
Transactions of the ASME
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Fig. 9 Deflection response between last two atoms, r I ÕsÄ„x IÀx IÀ1…Õs, versus t for several different
A 0 Õs and m
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modes~100! are included, i.e., the original full equations, and t
broken line is the result using only the first two modes witho
QSC, and dash-dot line is the result using only the first two mo
with QSC. The two results using the full modes or only tw
modes with the QSC are very close. However, the computa
time using the reduced-order model~two modes! is only 11% that
of the full model. The results for only one mode also provide
good approximation for this case. Note, moreover, that when
macromolecular chain consist of an even larger number of
ticles, the computational advantage of the reduced-order m
will be even greater.

Fig. 10 Nondimensional natural frequencies of the system „a…
versus the eigenmodes number
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e
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o
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a
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del

Figure 11~b! shows the rms deflection amplitude for each ato
of the macromolecular chain for the different modes included. T
agreement between the full and reduced-order model~two modes!
with QSC is very good. However it is very poor near the exci
tion end of the chain when only using two modes and still po
using ten modes without QSC. Hence the QSC is an impor
part of the reduced-order model methodology.

Figure 12 shows the total rms error versus the number of
cluded eigenmodes forA0 /s50.1 and m50.01 using the full
modes and reduced-order model with and without quasi-static
rection. As expected, the total error decreases as number o
cluded eigenmodes increases. As shown in Fig. 12, the quasi-s
correction significantly improves the computational accuracy
the reduced-order model.

Figure 13 shows a typical dynamic response using the redu
order model approach with quasi-static correction for a nondim
sional excitation frequency ofm50.05 and an amplitude o
A0 /s50.1. Figure 13~a! shows the dynamic response at the fr
end of the chain versus the nondimensional time,t. The solid line
indicates the results when all modes~100! and the broken lines are
for the results using only the first two modes, and dash-dot lin
the result using the first five modes, respectively. The two res
using the full modes and only five modes are very close. Fig
13~b! shows the rms deflection amplitude for each atom of
macromolecular chain for the different modes included. T
agreement between the full and reduced-order model when u
five modes is very good. However, it is poor when only using t
modes.
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Fig. 11 Dynamic response of the macromolecular chain using reduced-order model with and without the quasi-static
correction „QSC… for A 0 ÕsÄ0.1 and mÄ0.01
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Fig. 12 Total rms error versus eigenmodes, for A 0 ÕsÄ0.1 and
mÄ0.01, using the reduced-order model with and without quasi-
static correction
Õ Vol. 70, MAY 2003
Figure 14 shows the rms deflection amplitude for each atom
the macromolecular chain forA0 /s50.075 andm50.2. Eight
modes give good results, but five modes do not.

Summarizing the results of Figs. 11, 13, and 14 for the sev
excitation frequencies,m50.01, 0.05, and 0.2, and the corre
spondingA0 /s, the total rms error versus the number of includ
eigenmodes with quasi-static correction is shown in Fig. 15~a!. As
is expected, whenm increases, we need more eigenmodes in
reduced-order model for a certain prescribed accuracy. For
cases shown in Fig. 15~a! the system is responding to a relative
small excitation amplitude, thus the induced local nonlinear~Van
der Waal’s! force between the last two atoms is weak. Now if t
excitation amplitude is increased to sayA0 /s53.65 for m50.01
andA0 /s50.75 form50.05, the effect of the nonlinearity is mor
evident. These results are shown in Fig. 15~b!. For comparison,
the results from the smaller excitation amplitude are also show
the figure as indicated by the broken line. There is only a sm
difference between the two sets of results for small and la
excitations. The reduced-order model with quasi-static correc
still is quite accurate even in the presence of strong local non
Fig. 13 Dynamic response of the macromolecular chain using the reduced-order model with quasi-static correction
„QSC… for A 0 ÕsÄ0.1 and mÄ0.05
Transactions of the ASME
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earities. Future work will include adding more nonlinear eleme
to investigate the efficacy of reduced-order modeling under th
circumstances.

Concluding Remarks
By an appropriate choice of coordinates to describe the dyn

ics of a high-dimensional system with nonlinearities that are lo
or global, a substantial reduction in the conceptual and comp
tional complexities associated with such systems can be achie
If the nonlinearity is local, a combination of eigenmodal and d
crete coordinates may be most advantageous. Applications to
the macroscale, e.g., conventional springs and masses, an
microscale, e.g., Lennard-Jones potential, are illustrated.

Future work will extend the analysis presented here to~1! two
and three dimensions and~2! a physically significant one-
dimensional model for an atomic force microscope~AFM! pulling
on a nanoscale specimen to generate, for example, protein fo
~‘‘snap buckling’’ of a protein fragment! and the study of the
dynamics which determine re-folding~‘‘hysteresis’’! of the pro-
tein.

In Ref. @19# a simple low-dimensional model using a sing
nonlinear spring/mass to represent the protein dynamics has

Fig. 14 RMS amplitude using the reduced-order model with
quasi-static correction „QSC… for A 0 ÕsÄ0.075 and mÄ0.2
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considered. Using the present reduced-order method, a multim
multiple degree-of-freedom model may be used to represent
protein, thereby significantly enhancing the physical fidelity of t
model and its simulation with substantial reductions in compu
tional cost and complexity compared to other existing method

Other nanoscale devices and phenomena with significant n
linearities may be modeled in a similar way. For more sophi
cated physical and mathematical models, multiple static equilib
may exist and the choice of eigenmodes and the associated
equilibrium will need to be addressed.

Appendix A

Relationship Between a Finite Difference Model for Axial
Vibrations of a Beam Represented in Terms of Finite Differ-
ences and the Mass-Spring Model. For the spring-mass system
shown in Fig. 2, the potential and kinetic energies for a spri
mass may be written as

Us5
1

2 (
i 51

K~xi 212xi !
2 (A1)

Ts5
1

2 (
i 51

Mẋi
2. (A2)

On the other hand, the potential and kinetic energies for
axial deformations of a rod may be written as

Ua5
1

2 E0

L

EAS ]u

]xD 2

dx5
EA

2
Dx(

i 51
~ui 212ui !

2/

Dx25
EA

2Dx (
i 51

~xi 212xi !
2 (A3)

Ta5
1

2 E0

L

mu̇i
2dx5

1

2
Dxm(

i 51
u̇i

25
1

2
Dxm( i 51 ẋi

2 (A4)

whereui[xi , and a change of notation is introduced.
Comparing~A3!, ~A4! to ~A1!, ~A2!, an equivalence between th

spring-mass and axial rod models is obtained:

M5mDx

K5
EA

Dx
.

Fig. 15 Total rms error versus eigenmodes for different excitation frequency, mÄ0.01, 0.05, and 0.2, using the reduced-
order model with quasi-static correction. „a… For smaller excitation amplitude „weak local nonlinearities … and „b… for
larger excitation amplitude „strong local nonlinearities ….
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For a continuum axial beam model, the Euler-Lagrange eq
tion is

EA
]2u

]x2 1m
]2u

]t2 50.

The general solution for the differential equation is~assuming
simple harmonic motion with the goal of obtaining the natu
frequencies!

u5A cosAmv2

EA
x1B sinAmv2

EA
x.

The boundary conditions areu50 at x50 and]u/]x50 at x
5L. ThusA50 andBÞ0, and the eigenvalue solution is

cosAmv2

EA
L50

or

mv2L2

EA
5S p

2 D 2

,S 3p

2 D 2

, . . . .

Thus the equivalence between discrete and continuum mo
is

mv2L2

EA
5

M

Dx

v2

KDx
~Dx!2Nb

25
Mv2

K
Nb

2⇒S p

2 D 2

,S 3p

2 D 2

, . . .

as Nb→`,

or

AM

K
vNb→

p

2
,
3p

2
, . . . as Nb→`. (A5)

See representative numerical results in Fig. 2.

Appendix B

Equations of Motion for the EigenmodeÕParticle Model
Governed by the Lennard-Jones Potential. The kinetic and
potential energies of system~b! expressed in terms of eigenmod
coordinates are

Tb5
1

2 (
n51

Nb

Mn
bḃn

2 (B1)

Ub5
1

2 (
n51

Nb

Mn
b~vn

b!2bn
2 (B2)

whereNb are the~dominant! eigenmodes of system~b! andvn
b are

the natural frequencies~eigenvalues!.
System~a! is represented in terms ofxI

a andxI 11
a or xI 11

a 2xI
a

[r I 11
a . Thus the potential and kinetic energies of system~a! may

be written as

Ua5U~r I 11
a ! (B3)

Ta5
1

2
MI 11

a ~ ẋI
a1 ṙ I 11

a !2 (B4)

and the constraint equation is

xI
a2xI

b50. (B5)

Now

xI
b5(

n
EInbn (B6)

where EIn is the appropriate transformation obtained from t
eigenvectors of system~b!.
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Using Lagrange’s equation with a Lagrange multiplier to e
force the constraint equation, one obtains

Mn
b@ b̈n1~vn

b!2bn#2lEIn50 (B7)

MI 11
a ~ ẍI

a1 r̈ I 11
a !1

]U~r I 11
a !

]r I 11
a 50 (B8)

MI 11
a ~ ẍI

a1 r̈ I 11
a !1l50 (B9)

and the constraint equation becomes

xI
a5(

n
EInbn . (B10)

Note that in this formulation, the only nonlinear term appears
~B8! through the gradient of the potential energy between the
masses furthest from the ‘‘wall.’’ This formulation is readily gen
eralized to several particles in system~a! and to two and three-
dimensional arrays of particles. Of course, the computatio
complexity increases as the number of particles in system~a! in-
creases. But in the present formulation this number will be mu
smaller than in more conventional approaches involving a part
representation for both system~a! and ~b!.
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Coefficients of Restitution Based
on a Fractal Surface Model
Equations of rigid-body mechanics provide a means to predict the post-collision beh
without recourse to highly complex, detailed analysis of deformations during con
Before the prediction can be completed, the coefficient of restitution, which relate
rebound velocity to the incident velocity, must be estimated properly. The coefficie
restitution depends on the surface topography in addition to the material properties
incident velocity. Recent investigations showed that surface topography can be ch
terized properly by fractal models. This paper proposes a normal contact model
fractal surface in contact with a rigid smooth half-space. The fractal surface is c
structed based on the Cantor set and composed of elastic-perfectly plastic ma
Asymptotic continuous expressions for the load-displacement relations during loadin
unloading are derived. Based on these results, we study the effects of surface roug
material properties and incident velocity on the coefficient of restitution.
@DOI: 10.1115/1.1574063#
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1 Introduction
The analysis of impact phenomena has important applicat

in different fields. For example, impacts between the slider
disk greatly influence the reliability of magnetic disk drives. A
curate analysis of the collision between two deformable bodie
difficult and time-consuming even for the large-scale compu
tional capabilities developed recently. If the local deformations
the contact area and the transient response during collision ar
of interest, the colliding bodies can be treated as rigid for pred
ing the post-collision behavior. In this case, a coefficient of re
tution, purports to describe the energy loss during collision, m
be incorporated to relate the rebound velocity to the incident
locity. When the impact is perpendicular to the nominal plane
the interface, the coefficient of restitutione is defined to be the
ratio of the rebound velocity to the incident velocity. Values
e51 ande50 denote the idealized concepts of perfectly elas
and plastic impacts, respectively. Introduction of the coefficien
restitution greatly simplifies the procedure for determini
the post-collision motion. The success of the rigid-body imp
analysis depends on the correct estimation of the coefficien
restitution.

An important subject is how the coefficient of restitution
related to the basic physical material properties. Tabor@1#, Gold-
smith @2#, and Johnson@3# considered the impact between
sphere and a stationary half-space at moderate impact veloc
Both colliding bodies were assumed to be smooth. As indicated
Johnson@3#, when the impact velocity is small compared with th
elastic wave velocity, the static contact force-compression law
be employed to investigate the impact behavior. Under this c
dition, the coefficient of restitution can be estimated based
principles of energetics. Up to the instant of maximum compr
sion, the initial kinetic energy transforms into strain energy, ela
and plastic, of the two colliding bodies. After the point of max
mum compression, there is a release of elastic stresses an
kinetic energy of rebound is equal to the work done during ela
recovery. If the compliance relationship of load and displacem

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
10, 2001; final revision, September 9, 2002. Associate Editor: K. T. Ramesh. Dis
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Department of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
Copyright © 2Journal of Applied Mechanics
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for elastic-plastic contact is known, the rebound velocity a
hence the coefficient of restitution can be determined. Howe
the compliance relationship for elastic-plastic contact is not p
cisely defined, so that a theory of elastic-plastic impact is nec
sarily approximate. By choosing suitable compliance relatio
ships, the dependence of the coefficient of restitution on
material properties, incident velocity, and radius of the ball can
estimated,@1–3#.

All engineering surfaces are rough in nature and have rand
height distribution,@4,5#. The compliance relationship of real bod
ies depends closely on the waviness and roughness of the co
surfaces,@3#. Therefore, it stands to reason that surface topog
phy of contact bodies will have a large effect on the collisi
process, especially at the initial stage of compression. Sev
probabilistic theories have been developed to model the mech
cal behavior of contacting rough surfaces,@6–11#. One of the
most popular models is the Greenwood and Williamson~G&W!
model, @6#. In this model, the rough surface is represented b
collection of hemispherical asperities having a constant radiu
curvature. The heights of the summits are distributed norm
about the mean asperity plane and it is assumed that the con
ing asperities deform elastically according to Hertz theory. Cha
et al. @12# modified the G&W model and proposed an elast
plastic contact model of rough surfaces. Based on this mo
Chang and Ling@13# derived the relationship between the coef
cient of restitution and the surface topography. However, rec
studies showed that conventional statistical parameters use
characterize the surface topography, including the summit ra
in the G&W model, are not unique to a surface. These parame
depend on the resolution and scan length of the roughn
measuring instrument,@14–17#. This result suggests the use o
fractal geometry,@18#, for the characterization of surface rough
ness. Lately several fractal surface models have been propos
describe the interaction between rough surfaces in different ar
@17,19–24#. Majumdar and Bhushan@21# used the Weierstrass
Mandelbrot function to simulate surface roughness and emplo
modified Hertz equations to model the elastic-plastic deforma
of the surface. Borodich and Mosolov@23# constructed a fracta
rigid die using the Cantor set. They derived asymptotic com
ance expressions for the fractal die penetrating a rigid-perfe
plastic half-space and elastic half-space, respectively. Wa
et al. @24# generalized the method of Borodich and Mosolov@23#
by allowing the fractal surface to deform. A continuou
asymptotic model incorporating volume conservation was de
oped to describe the rigid-perfectly elastic deformation of a frac
surface in contact with a smooth and rigid half-space. Althou
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much work has been done on the normal contact behavior
tween rough surfaces using fractal surface model, little atten
has been devoted to the significance of the fractal parameter
the coefficient of restitution.

The purpose of this paper is to investigate the effect of surf
roughness on the coefficient of restitution. We consider a fra
surface composed of elastic-perfectly plastic material in con
with a smooth rigid half-space. Following Borodich and Mosol
@23# and Warren et al.@24#, the fractal surface is constructed bas
on the Cantor set. Continuous asymptotic compliance relat
during loading and unloading are derived, respectively. These
lations are then used to express the coefficient of restitution
terms of surface topography and material properties, in additio
impact velocity.

2 Cantor Set Surface Model
The Cantor set surface shown in Fig. 1 is constructed by join

the segments obtained from successive stages of the Cantor s
each stage, the middle sections of the previous segments ar
moved such that the total length of the remaining segments isf x
times that of the previous segments. The recess depth at thn
11)th stage is 1/f z times that at thenth stage. Therefore, the
horizontal length at thenth stage is

l n5~1/f x!l n215~1/f x!
nl 0 , (1)

while the recess depth is

hn5~1/f z!hn215~1/f z!
nh0 . (2)

As shown by Borodich and Mosolov@23#, the fractal dimensionD
can be related to the fractal parametersf x and f z as

D512
ln f z

ln~2 f x!
1

ln 2

ln~2 f x!
, (3)

where 1, f x and 1, f z,2. The fractal dimensionD along with
the parametersl 0 , h0 , f x , and f z can be determined experimen
tally from a surface profile of the rough surface using the meth
proposed by Warren et al.@24#.

3 Normal Contact Model
Consider a Cantor set fractal surface of unit depth in con

with a smooth rigid half-space as shown in Fig. 2. The rou
surface is modeled as a Winkler foundation@25# of thicknessH*
and composed of elastic-perfectly plastic material with Youn
modulusE, yield stresssy , and yield strain«y5sy /E. A load is
applied to press the rigid half-space into the rough surface
then removed gradually. The loading and unloading process
be considered as quasi-static. Assume that each asperity be

Fig. 1 Fractal surface constructed from the Cantor set
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as an axially loaded rod and there is no interaction between
rods. Thus the total load applied to the rigid half-space is the s
of the contact load of each asperity.

3.1 Load-Unload Behavior of a Single Rod. Consider the
load-unload behavior of a single asperity first. The displacem
of the rigid half-space is measured from a reference plane th
H* apart from the bottom of the rod~Fig. 3!. The distance be-
tween the top of the rod and the reference plane ishi . When the
rigid half-space with a displacementu is in contact with the rod,
the strain of the rod is

« i5
u2hi

H* 2hi
. (4)

In the elastic region,« i,«y , the contact loadPi is

Pi5E« is, (5)

wheres denotes the contact area. It can be easily shown that
inception of plastic deformation occurs when the displacemen
the rigid plane reachesuy ,

uy5«y~H* 2hi !1hi . (6)

For u.uy , the deformation is uniformly plastic and the corr
sponding contact load is

Pi5sys5E«ys. (7)

Fig. 2 A Cantor set surface in contact with a smooth rigid
half-space

Fig. 3 A single asperity in contact with a smooth rigid half-
space
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Then consider the unloading behavior of the rod. Assume that
rod is unloaded from a maximum strain«max.«y . Let su andPu
indicate the stress and load during the unloading process, res
tively. Then

Pu5sus. (8)

Due to the plastic deformation, there is a residual strain« r when
the load is removed. In the unloading stage,su is related to« by

su5E~«2« r !. (9)

Using the fact thatsu5sy when«5«max, it follows that

« r5«max2«y . (10)

Thus, the dependence of the contact load during unloading on
displacement has the form

Pu5sysF u2umax

~H* 2hi !«y
11G . (11)

3.2 Load-Unload Behavior of the Fractal Surface. First,
consider the loading process. When the rigid half-space rea
the nth stage of asperities, the asperities above thenth stage are
compressed. The strain of thei th stage of asperities can be o
tained by replacingu in Eq. ~4! with hn as

« i5
hn2hi

H* 2hi
. (12)

It can be shown that« i.« j , for i . j .n. Therefore, when some
stages of asperities deform plastically, we can find a critical sta
the nc th stage, such that the asperities above the critical s
deform plastically while those below the critical stage defo
elastically. Then the contact loadPn can be expressed as

Pn5 (
i 5n11

nc

E« isi1 (
i 5nc11

`

sysi , (13)

wheresi denotes the contact area of thei th stage of asperities. Th
first term on the right-hand side of Eq.~13! represents the contac
force due to elastic deformation, while the second term due
plastic deformation. By using Eq.~12!, the elastic contact force
can be expressed as

(
i 5n11

nc

E« isi5 (
i 5n11

i 5nc

Esi

hn2hi

H* 2hn
5

E

H* (
i 5n11

i 5nc

si3
hn2hi

S 12
hi

H* D .

Assuming thathi!H* and neglecting the higher-order terms, t
above equation reduces to

(
i 5n11

nc

E« isi'
E

H* (
i 5n11

nc

si~hn2hi ! (14)

Substituting Eq.~14! in Eq. ~13! yields the contact force as

Pn5
E

H* (
i 5n11

nc

si~hn2hi !1sy (
i 5nc11

`

si . (15)

This equation contains two different forms of series as(si and
(hisi . From the definition of Cantor set and using Eqs.~1! and
~2!, these two series can be expressed as
Journal of Applied Mechanics
the

pec-

the

hes

-

ge,
age
m

t
to

e

(
i 5n1

n2

si5 (
i 5n1

n2

~ l i2 l i 11!5 l n1
2 l n211 , (16)

(
i 5n1

n2

hisi5h0l 0S 12
1

f x
D Fbn12bn211

12b G , (17)

where

b51/~ f xf z!. (18)

By using these relations and choosing suitable upper and lo
limits for each series, Eq.~15! can be rewritten as

Pn

PY
5

h0

«yH* H S 1

f z
D nF S 1

f x
D n11

2S 1

f x
D nc11G

2S 12
1

f x
D S bn112bnc11

12b D J 1S 1

f x
D nc11

, (19)

where

PY5syl 0 . (20)

The total contact force for purely elastic deformation can be
tained by lettingnc→` in Eq. ~19! and the result is

Pn

PY
5

h0

«yH* F S 1

f z
D nS 1

f x
D n11

2S 12
1

f x
D S bn11

12b D G . (21)

Then, we proceed to study the unloading behavior of the fra
surface. Letumax denote the maximum displacement of the rig
half-space, andn̄c the corresponding critical stage. That is to sa
whenu5umax, asperities above then̄c th stage have plastic con
tact while those below then̄c th stage have elastic contact. For th
elastically deformed asperities, the load-displacement curve in
unloading process coincides with that in the loading process.
the other hand, the load-displacement relationship of the pla
cally deformed asperities during unloading is described by
~11!. When the rigid half-space is withdrawn to a stage below
critical stage, say thenth stage, the total contact load can b
expressed as

Pu5 (
i 5n11

n̄c

Esi

u2hi

H* 2hi
1 (

i 5n̄c11

`

Esi S u2umax

H* 2hi
1«yD . (22)

For stages above the critical stage, due to the plastic deforma
the separation between the top of each stage and the refer
plane when the load is removed is different from the origin
separation. Leth̄i denote the separation of the top of thei th stage
and the reference plane at the end of the unloading process. W
the rigid plane is withdrawn to thenth stage that is above th
critical stage, the total contact load can be expressed as

Pu5 (
i 5n11

`

Esi S u2umax

H* 2hi
1«yD , u5h̄n,hnc . (23)

Following the same procedure for analyzing the loading behav
we obtain the total contact force during unloading as
Pu

PY
55

u

«yH* S 1

f x
n112

1

f x
n̄c11D 2

h0~ f x21!

«yH* f x
S bn112b n̄c11

12b D 1
1

«yf x
n̄c11 S u2umax

H*
1«yD u5hn , n<n̄c

1

«yf x
n11 S u2umax

H*
1«yD u5h̄n , n̄c,n.

(24)
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3.3 Asymptotic Analysis. In this section, we proceed to de
rive the asymptotic load-displacement expression. The differe
between the heights of protrusions of thei th and (i 11)th stages
diminishes asi→`. Whence, the displacement can be treated a
continuous variable in the rangen@1. From the definition of Can-
tor set and the expressionu5hn , we obtain

n52
log~u/h0!

log~ f z!
(25)

and

S 1

f z
D n

5
u

h0
. (26)

Subsequently, it can be shown that forn@1,

S 1

f x
D n

5S u

h0
D a

and bn5S u

h0
D 11a

, (27)

in which

a5
log~ f x!

log~ f z!
. (28)

Then we need to know the relationship between the critical st
nc and the displacement of the rigid half-space. When the ri
surface reaches thenth stage of asperities (u5hn), the asperities
above thencth stage deform plastically while those below th
critical stage deform elastically. In other words,«nc

,«y

<«nc11 . Using Eqs.~2! and ~12!, we obtain

S 1

f z
D nc11

<
hn2H* «y

h0~12«y!
5

u2H* «y

h0~12«y!
,S 1

f z
D nc

. (29)

Let

x5
u2H* «y

h0~12«y!
. (30)

Equation~29! can be rewritten as

nc,2
log~x!

log~ f z!
<nc11. (31)

As can be seen from Eq.~29!, if u/H* ,«y , nc does not exist.
This indicates that the deformation is purely elastic. On the ot
hand, if u/H* @«y , nc'n11. This implies that the (n11)th
stage yields when the rigid surface reaches thenth stage. Hence
the fractal rough surface almost has purely plastic deformat
For asymptotic analysis define
n

a

a
p
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nc52
log~x!

log~ f z!
. (32)

It can be shown that

~1/f x!
nc5xa and bnc5x11a

After substituting the above relations into Eqs.~19! and ~21!, we
obtain the following load-displacement relations for purely elas
deformation and elastic-plastic deformation, respectively.
purely elastic deformation,

P

PY
5S h0

«yf xH* D F12
~ f x21!b

12b G S u

h0
D 11a

. (33)

For elastic-plastic deformation,

P

PY
5S h0

«yH* f x
D3H S u

h0
D F S u

h0
D a

2xaG
2

~ f x21!b

12b F S u

h0
D 11a

2x11aG J 1
xa

f x
. (34)

By a similar procedure, we proceed to analyze the asymptot
unloading behavior of the fractal surface. Letumax denote the
maximum displacement of the rigid plane, andn̄c be the corre-
sponding critical stage. From the definition of the critical stage
can be shown that the distance between the top of then̄c th stage
and the reference plane is

h̄n̄c
5h0xM , (35)

where

xM5
umax2«yH*

~12«y!h0
. (36)

The distance between thè–th stage and the reference plane d
to the plastic deformation after the load is removed is

h̄`5umax2«yH* . (37)

During unloading, when the rigid plane is withdrawn to a positi
below the critical stage, the deformation of the fractal surface
partially plastic. On the other hand, when the rigid plane is wi
drawn to a position above the critical stage, the fractal surface
purely plastic deformation. For these two cases, the lo
displacement relationship during unloading can be, respectiv
expressed as
P

PY
5H ~u/h0!

«yf x~H* /h0! F S u

h0
D a

2xM
a G2

~ f x21!b@~u/h0!11a2xM
11a#

«y~H* /h0! f x~12b!
1F ~u/h0!2~umax/h0!

«yH* /h0
11G xM

a

f x

hn̄c
<u,umax

1

f x~H* /h0! S u

«yh0
2

12«y

«y
xM D a11

h̄`<u,hn̄c

. (38)
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4 Coefficient of Restitution
Consider a rigid body with smooth flat contact surface a

proaching the stationary fractal surface with an initial velocityv1 .
Following contact a short period of deformation takes place u
the relative velocity between the two impacting bodies vanish
At this instant, the fractal surface has maximum deformation,
the initial kinetic energy transforms into strain energy stored
the fractal surface if the energy contributed to the elastic w
propagation is negligible. During the remainder of contact a
riod of restitution occurs until the contact area reduces to zero.
p-

til
es.
nd
in
ve
e-

For

a given incident velocityv1 , the maximum displacement of th
rigid planeumax, at which the relative velocity between two im
pacting bodies vanishes, can be obtained by

1

2
mv1

25E
0

umax

P~u!du, (39)

wherem is the mass of the rigid body andP is the contact load
during loading as described by Eq.~33! or ~34!, depending on
whether plastic deformation is induced. For purely elastic cont
Eq. ~33! should be employed. In this case, all the strain ene
Transactions of the ASME
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stored during loading will be recovered to kinetic energy. T
rebound velocity of the rigid body at the end of the period
restitution is the same as the incident velocity. And the coeffici
of restitution is unity. For a plastically deformed fractal surfac
plastic deformation occurs during loading and only elastic de
mation is involved during unloading,@1#. The strain energy re-
leased during unloading transforms into kinetic energy of the ri
body. Therefore the rebound velocityv2 is obtained by

1

2
mv2

25E
h̄`

umax

Pu~u!du, (40)

where the unloading contact loadPu is described by Eq.~38!. The
coefficient of restitution is obtained by

e5
v2

v1
5S E

0

umax

P~u!du

E
h̄`

umax

Pu~u!duD
1/2

. (41)

5 Results and Discussion
First, we verify the asymptotic load-displacement relationsh

Figures 4~a! and ~b! show the comparison of the asymptot
~solid! and series ~dashed! representations of the load
displacement relationship for various values of fractal paramet

Fig. 4 Comparison of the asymptotic „solid … and series
„dashed … results of the load-displacement curves for various
values of fractal parameters, „a… f xÄ1.2, „b… f xÄ1.5
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As can be seen from the figures, the deviation between
asymptotic and series representations increases with the disp
ment, as expected. Besides, for a fixed value off x , the deviation
between the asymptotic and series representations increases
f z . It is observed that the deviation is less than 10% in the ra
u/h0,0.04. In the following discussion, we confine the displac
ment in this range and use the asymptotic representations to s
the effects of material properties and fractal parameters on
coefficient of restitution.

Figure 5 shows the load-unload curves at various Youn
modulus-to-yield stress ratios. As can be seen from the figure
a fixed value of displacement, the load increases with the Youn
modulus, as expected. The unloading curves exhibit an initi
linear response. This is due to the elastic recovery of the fra
surface. Bhattacharya and Nix@26# have shown that material
with a larger Young’s modulus-to-yield stress ratio exhibit grea
residual depth under a fixed maximum displacement, which is
agreement with the results shown in Fig. 5.

The significance of fractal parametersf x and f z on the load-
unload curves is shown in Fig. 6. As can be seen from Fig. 6 t
when f x is held constant, the load required to produce the sa
displacement increases withf z . This is due to the fact that a large
f z indicates a smoother surface. Equations~33! and~34! show that
the parametera5 log(fx)/log(fz) has an import effect on the load
ing curve. Sincea is positive, for purely elastic deformation, th
load scales as the displacement to a power greater than
Therefore, all the loading curves in Fig. 6 are initially convex. A
the loading progresses, more and more asperities deform pl
cally and the last term in Eq.~34! becomes more significant. In
this stage, the load scales as the displacement to a power gr
than one forf x. f z , but less than one forf x, f z . It is observed in
Fig. 6 that, as the loading progresses, the loading curve is ent
convex fora.1, while changes from convex to concave fora
,1.

Figure 7 shows the coefficient of restitution versus the dim
sionless incident velocity for different values of the Young
modulus-to-yield stress ratio. The dimensionless incident velo
V* is defined asV* 5Amv2/(2l 0Eh0). The coefficient of restitu-
tion is equal to unity when the incident velocity is lower than t
critical velocity at which onset of plastic deformation occurs. T
critical velocity decreases with the increasing Young’s modul
to-yield stress ratio. Once the velocity exceeds the critical vel
ity, the coefficient of restitution is less than one because so
energy is dissipated in plastic deformation. The area enclose
the load-unload curve and the horizontal axis represents the
ergy lost in plastic deformation. As shown in Fig. 5, this ar
increases with the Young’s modulus-to-yield stress ratio fo
fixed value of maximum displacement. This is due to that mos

Fig. 5 Load versus displacement as a function of Young’s
modulus-to-yield stress ratio
MAY 2003, Vol. 70 Õ 343
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the asperities are deformed plastically when the Young’s mod
to yield stress ratio is large. Figure 7 confirms that the coeffici
of restitution decreases as the ratio of Young’s modulus-to-y
stress is increased.

The effect of the fractal parameters on the coefficient of re
tution is shown in Fig. 8. Figure 8~a! shows the coefficient of
restitution versus the incident velocity for various values off z
while f x is held constant. The critical velocity increases withf z .
Once the incident velocity exceeds the critical velocity, the co

Fig. 6 Load-displacement curves for different values of fractal
parameters, „a… f xÄ1.4, „b… f xÄ1.8

Fig. 7 Coefficient of restitution versus incident velocity as a
function of Young’s modulus-to-yield stress ratio
344 Õ Vol. 70, MAY 2003
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ficient of restitution decreases rapidly with the incident veloci
As incident velocity increases, the coefficient of restitution b
comes less sensitive to velocity. A similar trend can be seen f
Fig. 8~b! that the coefficient of restitution decreases with incre
ing f x .

6 Conclusion
We studied the effect of surface roughness on the coefficien

restitution. We proposed an elastic-perfectly plastic contact mo
for a fractal surface in contact with a rigid smooth half-space. T
fractal surface was constructed based on the Cantor
Asymptotic analysis was performed to derive a continuous lo
displacement relation. The result shows that the compliance r
tion depends strongly on the fractal parameters that characte
the surface topography. Based on the load-displacement rela
we investigated the significance of fractal parameters as we
material properties and incident velocity on the coefficient of r
titution. It is found that materials with high Young’s modulus-to
yield stress ratio have smaller coefficient of restitution. Upon
point the incident velocity exceeds the critical velocity, the co
ficient of restitution drops fast with the incident velocity. Th
sensitivity of the coefficient of restitution to the incident veloci
decreases as the incident velocity increases. The coefficien
restitution decreases with increasing fractal dimension.

Fig. 8 Coefficient of restitution versus incident velocity for dif-
ferent values of fractal parameters, „a… f xÄ1.5, „b… f zÄ1.5
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A Fluid/Solid Model for Predicting
Slender Body Deflection in a
Moving Fluid
An analytical solution is presented for the steady-periodic shape variation of a thin el
beam subject to fluid mechanic forces and driven by the motion imposed on its end
general solution is applicable to such problems as swim fins and aerodynamic flutter
the proper choice of boundary conditions. The general results are exemplified he
using specific boundary conditions that mimic the motion of swim fins. The calcu
instantaneous shape, position, slopes, and lateral velocities of the fin are compared
corresponding measurements taken from underwater video of fins worn by divers
ming at a controlled speed. The analysis revealed new swim technique parameter
characterize the heel slope and its phase with respect to the heel motion. The calc
power, thrust, and Froude efficiency are presented in terms of these parameters.
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k

-
s

f

o

i

ec-

ity,

han

mic
ur-

id-
ught

ary

a

k

1 Introduction
Lighthill @1# used the ‘‘slender-body’’ approximation of Mun

@2# to work out the inviscid flow and corresponding instantaneo
lift per unit length, power, thrust, and Froude efficiency for
slender fish~or swimming mammal! in terms of a specified time
dependent surface shape. The results were presented in term
virtual mass per unit length and time averages of functions
pending on the slope and normal velocity component of the tr
ing ~or free! edge of the surface. Since the time-dependent sur
shape was not known a priori, Lighthill@1# suggested various
oscillatory surface motions. In another study at about the sa
time, Wu @3# imposed oscillatory surface motions for a tw
dimensional flat fish. For many applications, however, the shap
a result of the fluid motion and vice versa. That is, the fluid-so
interaction problem is of the moving boundary type.

The presently reported work does not assume a time-depen
surface shape, but rather calculates it by incorporating Lighth
@1# relationship between the fluid mechanic force and the surf
shape into the equation defining the elastic deflection of a Eu
Bernoulli beam.

2 Analysis

ForceÕDeflection. Takex to be in the direction of the uniform
freestream velocity relative to the swimmer,U, ~Fig. 1!. The local
fluid mechanic lift force per unit length,L(x,t)5]Fz /]x, is re-
lated to the local, instantaneous surface shape,h(x,t), by the fol-
lowing equation~Lighthill @1#!

L~x,t !52~rA!S ]

]t
1U

]

]xD 2

h~x,t ! (1)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
29, 2001; final revision, October 16, 2002. Associate Editor: D. A. Siginer. Disc
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Department of Mechanical and Environmental Engineering, University
California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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where r is the freestream fluid density and (rA) is the virtual
mass, per unit length, of a cylinder circumscribing the cross s
tion of the surface, and (rA) is taken here to be constant.

The dynamic deflection of a thin elastic beam, having dens
rb , cross-sectional area,Ab , elastic modulus,E, and moment of
inertia, I , is governed by the following equation:

~rbAb!
]2h~x,t !

]t2 5F~x,t !2~EI !
]4h~x,t !

]x4 (2)

where F(x,t) is the instantaneous beam loading~force per unit
length!.

In our problem, the beam inertia is taken to be much less t
the inertia of the virtual mass of fluid@(rbAb)!(rA)#; then, us-
ing Eqs.~1! and ~2! whereF(x,t)5L(x,t),

~EI !
]4h~x,t !

]x4 1~rA!S ]

]t
1U

]

]xD 2

h~x,t !50. (3)

This gives the quasi-static deflection of the beam under dyna
loading that depends on time-varying inertia forces in the s
rounding fluid. Forced motion of the boundary atx50 drives the
motion of the surface. In the present study, this forcing is cons
ered to be periodic. Hence, a steady-periodic solution was so
of the form h(x,t)5Re$ĥ(x,t)%, where ĥ(x,t)5ĥ0(x)eivt, and
‘‘Re’’ indicates ‘‘real part,’’ ‘‘ ∧’’ indicates complex variable, and
v is the frequency of the imposed motion.

The steady-periodic solution of Eq.~3! for the ~complex! fin
shape is

ĥ~x,t !5ei (vt1dx)@Ĉ1cos~wx!1Ĉ2sin~wx!#

1ei (vt2dx)@Ĉ3cosh~gx!1Ĉ4sinh~gx!# (4)

where theĈj are constants to be determined by the bound
conditions, and

d[U/~2s! (5)

g[UAb21/~2s! (6)

w[UAb11/~2s! (7)
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where

s[A~EI !/~rA! and b[4vs/U2.

Equation~4! indicates the presence of two waves traveling
the beam at the same wave speed, 2vs/U, but in opposite direc-
tions.

Boundary Conditions—Swim Fin. The experimentally ob-
tained ‘‘fin signature’’ from Samimy@4#, shown as Fig. 1, was
used for guidance in determining the boundary conditions to
emplify the mathematical model as it applies to underwater
swimming. This ‘‘fin signature’’~Fig. 1! shows a ‘‘trace’’ of the
leading and trailing edges~LE and TE! of the fin taken from a
video of underwater fin swimming.

For a given human subject, the effectiveness of a fin varies
there is interplay between the fin type and the swimming te
nique to achieve performance goals,~Pendergast@5#!. For ex-
ample, there is an inverse relationship between kick depth
kick frequency that varies with fin geometry and fin stiffne
~Pendergast@5#!.

The fin leading edge (x50) is taken to be at the beginning o
the flexible part of the fin, near the toe of the swimmer, dow
stream of the rigid ‘‘foot’’ of the fin. The trailing edge (x5 l ) is at
the free end of the flexible region. It is over this portion of the fi
~i.e., 0<x< l ) that Samimy@4# studied its elastic behavior. It is
then natural to specify the peak to peak amplitude of the ki
2h0 , and the kick frequency,f 5v/(2p). Further, an analysis of
video of underwater fin swimming~and as will be shown in later
figures! Samimy@4# shows that the motion of the leading edge
approximately harmonic, i.e.,

ĥ~0,t !5h0eivt. (8)

Similarly, the analysis shows that the slope of the leading edg
also approximately harmonic at the same frequency with am
tude,hx0 , but shifted in phase bya, i.e.,

ĥx~0,t !5hx0ei (vt2a). (9)

Fig. 1 ‘‘Fin signature’’ showing the measured local, instanta-
neous slopes of the ‘‘leading edge’’ „LE… and ‘‘free end’’ „trailing
edge „TE……. The numbers, 1–22, indicate LE and TE segments
at 1Õ15 second increments. The fin shape is sketched in for
segment number 7. Note that xÄ0 is fixed to the LE and xÄ l is
at the TE.
Journal of Applied Mechanics
in

ex-
fin

and
ch-

and
ss

f
n-

n

ck,

is

e is
pli-

This amounts to a representation of swimming technique in te
of an angular location,a, called theleading edge coordination
angle, at which the magnitude of theleading edge slopeis maxi-
mum,hx0 .

Vanishing shear and moment at the free end~trailing edge! of
the fin,x5 l , provide the remaining two boundary conditions:

ĥxx~ l ,t !50 (10)

ĥxxx~ l ,t !50. (11)

Then, using Eqs.~8!–~11!, the constants of integration,Ĉj , are
obtained from the solution of the following linear system:

F 1 0 1 0

id w 2 id g

p̂1 p̂2 p̂3 p̂4

t̂1 t̂2 t̂3 t̂4

G3F Ĉ1

Ĉ2

Ĉ3

Ĉ4

G5F h0

hx0e2 ia

0
0

G (12)

where

p̂1[e1 id l@2~w21d2!cos~w l !2 i ~2dw!sin~w l !# (13a)

p̂2[e1 id l@2~w21d2!sin~w l !1 i ~2dw!cos~w l !# (13b)

p̂3[e2 id l@1~g22d2!cosh~g l !2 i ~2dg!sinh~g l !# (13c)

p̂4[e2 id l@1~g22d2!sinh~g l !2 i ~2dg!cosh~g l !# (13d)

and

t̂1[e1 id l@1~w313d2w!sin~w l !2 i ~3dw21d3!cos~w l !#
(14a)

t̂2[e1 id l@2~w313d2w!cos~w l !2 i ~3dw21d3!sin~w l !#
(14b)

t̂3[e2 id l@1~g323d2g!sinh~g l !2 i ~3dg22d3!cosh~g l !#
(14c)

t̂4[e2 id l@1~g323d2g!cosh~g l !2 i ~3dg22d3!sinh~g l !#.
(14d)

The power,P̄, thrust, T̄, and Froude efficiency,h̄F , averaged
over one cycle of time period,tp51/f , follow from Lighthill’s
analysis,@1#:

P̄52S 1

tp
D E

t50

tp E
x50

l ]h

]t
L~x,t !dxdt (15a)

P̄5~rA!US 1

tp
D E

t50

tp F]h

]t S ]h

]t
1U

]h

]xD G
x50

l

dt (15b)

T̄5 P̄/U2@~rA!/2#S 1

tp
D E

t50

tp E
x50

l S ]h

]t
1U

]h

]xD 2

dxdt

(16a)

T̄5@~rA!/2#S 1

tp
D E

t50

tp F H S ]h

]t D
2

2U2S ]h

]xD 2J G
x50

l

dt (16b)

h̄F[T̄U/ P̄. (17)

3 Results
The results can be conveniently presented in nondimensi

form by choosing the characteristic lengths forx andh(x,t) to be
l andh0 , respectively, and the characteristic time fort to bev21.
Equations~3! and ~8!–~11! then become

~e2!ĤXXXX1S S
]

]t
1

]

]XD 2

Ĥ50 (18)
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Ĥ~0,t!5ei t (19)

ĤX~0,t!5kei (t2a) (20)

ĤXX~1,t!50 (21)

ĤXXX~1,t!50. (22)

The resulting nondimensional groups are the Strouhal num
S, an elasticity number,e, the maximum leading edge slope,k,
and the angular location of the maximum leading edge slope,a, in
radians:

S[v l /U (23)

e[s/~ lU !5A~EI !/~rA!/~ lU ! (24)

k[hx0l /h0 (25)

where

Ĥ[ĥ/h0 , X[x/ l and t[vt.

Consequently, the nondimensional, instantaneous fin sh
Re$Ĥ%, average power,P̄/Pc , average thrust,T̄/Tc , and average
Froude efficiency,h̄F , will be functions ofS, e, k, anda, where
Pc[h0

2v2U(rA) andTc[Pc /(2U). It is noted that the elasticity
number,e, represents the ratio of an ‘‘elastic’’ velocity,s/ l , to the
freestream velocity,U.

Fig. 2 Calculated fin shapes, H„X,t…, as a function of X during
the kick cycle. Numbers denote increasing multiples of time, t,
in pÕ4 increments.

Fig. 3 Calculated lift distribution, L „X,t…ÕL c , as a function of
X during the kick cycle. Numbers denote increasing multiples
of time, t, in pÕ4 increments, where L cÆh 0U2

„rA …Õ l 2.
348 Õ Vol. 70, MAY 2003
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Typical calculated fin shapes and lift distributions are shown
Figs. 2 and 3, for the conditions of Fig. 1, namely:S52.52, e
51.38,k50.93, anda51.34 radians.

A calculated~dimensional! fin signature is shown as the line
segments in Fig. 4. The symbols~connected with lines! are mea-
surements from Samimy@4#. It can be seen that the fin shapes a
positions are in generally good agreement with the measureme
The characteristic lengths for these data arel 50.342 m andh0
50.213 m.

Figures 5, 6, and 7 show the time variations of the correspo
ing instantaneous locations of the leading edge (x50) and trailing
edge (x5 l ), their slopes and their vertical velocities, as calculat
from the solution of Eq.~3!. The symbols are measurements fro
Samimy@4#. It can be seen that the calculated theoretical resu
are in generally good agreement with the measurements.

The calculated variations of time-average power, thrust, a
Froude efficiency with the swimming technique parameters,k and
a, are shown in Figs. 8, 9, and 10. The data points correspon

Fig. 4 Fin signature computed for the experimental conditions
of Fig. 1. The time interval between each fin trace is 1 Õ5 second.
The symbols „connected with lines … are measurements from
Samimy †4‡. The numbers correspond to those in Fig. 1.

Fig. 5 Time variation of the position of the fin leading edge,
h „0,t …, „LE… and trailing edge, h „ l , t …, „TE… for the experimental
conditions corresponding to Fig. 1. The symbols are measure-
ments from Samimy †4‡.
Transactions of the ASME
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Fig. 6 Time variation of the slope of the fin leading edge,
h x„0,t …, „LE… and trailing edge, h x„ l , t …, „TE… for the experimen-
tal conditions corresponding to Fig. 1. The symbols are mea-
surements from Samimy †4‡.

Fig. 7 Time variation of the vertical velocity of the fin leading
edge, h t„0,t …, „LE… and trailing edge, h t„ l , t …, „TE… for the experi-
mental conditions corresponding to Fig. 1. The symbols are
measurements from Samimy †4‡.

Fig. 8 Variation of the non-dimensional power, P̄ÕPc , with
nondimensional maximum leading edge slope, k, and leading
edge coordination „phase … angle, a. The data point corre-
sponds to the experimental conditions of Fig. 1.
Journal of Applied Mechanics
the experimental conditions of Fig. 1. The behavior suggested
Fig. 10 is striking. It suggests that the swimming technique,
defined in terms of the phase lag,a, of the maximum leading edge
slope,k, can have a dramatic effect on the Froude efficiency,h̄F .
Indeed, the efficiency shows a precipitous dropoff~to negative
h̄F) asa→p. Note that negativeh̄F implies negative thrust.

4 Conclusions
An analytical solution was obtained for a fluid-solid interactio

problem of the moving-boundary type. By using an establish
approximation for the fluid mechanics, and forcing the moti
with a periodic input at the edge of the solid, a closed-form so
tion was derived for the surface shape as a function of time. Fl
forces, power, thrust, and Froude efficiency were also determin
This solution extends previous work in which the surface sha

Fig. 9 Variation of the nondimensional thrust, T̄ÕTc , with non-
dimensional maximum leading edge slope, k, and leading edge
coordination „phase … angle, a. The data point corresponds to
the experimental conditions of Fig. 1.

Fig. 10 Variation of the Froude efficiency, h̄F , with nondimen-
sional maximum leading edge slope, k, and leading edge coor-
dination „phase … angle, a. The data point corresponds to the
experimental conditions of Fig. 1.
MAY 2003, Vol. 70 Õ 349



l
o

rch
v-

Fin
f-

d.
behavior and/or waveform was prescribed. The presently repo
solution reveals a prediction of the local, instantaneous shap
an elastic surface in a fluid stream subjected to a prescribed
tion at the edge of the solid. It is given in terms of this motion, t
freestream velocity and the elastic properties and cross sectio
the surface. This first application of the theory to underwater
swimming shows encouraging agreement with experimental d
New swim technique parameters arose naturally from the ana
that characterizes the heel slope and its phase with respect t
heel motion. It is expected that the presently reported results
be useful in guiding both the design optimization of swim fins a
the analysis of experimental measurements of underwater an
surface swimmers. The incorporation of other boundary con
tions will permit the analysis of other surface/fluid interactive m
tions, such as problems in aeroelasticity involving flutter.
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Experimental Measurements of
Velocity, Potential, and
Temperature Distributions in
Liquid Aluminum During
Electromagnetic Stirring
An experimental technique has been developed to measure both axial and tran
velocities and temperature distribution in molten aluminum. Couette flow of liquid alu
num, lead, tin, and low melting alloy in cylindrical container was chosen for calibrat
of the experimental technique and the magnetic probe. Velocity and temperature p
for liquid aluminum rotating in cylindrical container at different angular velocities a
obtained for two different values of the depth. We determined that the velocity v
increase with magnetic induction.@DOI: 10.1115/1.1558082#
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1 Introduction
Due to its many advantages centrifugal casting is widely u

in pipe production. The centrifugal force influences the segre
tion properties and structure of metals. Several modifications
the centrifugal casting have been developed. One of the m
effective modifications to centrifugal casting is electromagne
stirring. In this method, a rotational magnetic field induces ed
currents in molten metal. The Lorentz~electromagnetic! force re-
sults from the interaction between the magnetic field and e
currents. This force combined with the centrifugal force results
the internal motion of the liquid metal, which significantly reco
structs the cast structure. To develop mathematical models
hydrodynamic computer codes to predict fluid velocity and te
perature distributions in molten metals, it is substantive to cre
an experimental database for electromagnetic stirring process
different metals and alloys.

Spitzer et al.@1# presented a mathematical model to predict
three-dimensional flow field in rotational electromagnetic stirri
of round strands. The Navier-Stokes equations, the Maxwell eq
tions and the continuity equation have been solved simultaneo
to compute the flow field in the liquid core of the strand. T
one-dimensional computations were compared with experime
data obtained for mercury, and a satisfactory agreement has
found. An experimental water model was used to validate
predicted secondary velocity components of the three-dimensi
flow. The results demonstrates that in electromagnetic stirring
steel strands, the secondary flow is very significant.

The effects of external magnetic field and water cooling ha
been experimentally studied by Zhang et al.@2#. It has been
shown that the macrostructure of cast Al-Si alloy can be refi
by application of electromagnetic stirring or water cooling. T
better refinement was achieved by superimposing both of th
effects. Due to fluid flow and rapid cooling, silicon solidified
bulbous dendrites near the mould wall.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 1
2001; final revision, Sept. 23, 2002. Associate Editor: D. A. Siginer. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
Copyright © 2Journal of Applied Mechanics
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To obtain the semisolid Al-7wt%Si alloy, Lim et al.@3# used
electromagnetic rotation with an induction motor and observed
size and the distribution state of the primary solid particle,
degree of sphericity, and the fraction of primary solid. Obser
tions of the microstructures of the alloy, which was semisolidifi
by magnetic stirring, showed that the size of the primary so
particle and its standard deviation increases with the specific s
fraction. The size of the primary solid particle increased from
mm to 118mm as solid fraction increased from 0.2 to 0.5. Th
degree of sphericity increased with solid fraction.

Griffiths and McCartney@4,5# studied the flow control during
solidification using electromagnetic field and the resulting str
ture. Series of Al-Si alloys of different compositions and Al allo
7150 were solidified under conditions of controlled heat flow a
electromagnetic stirring to examine how the CET was affected
bulk liquid flows, of varying velocity. The results of the stud
show that the electromagnetic stirring of Al-Si alloys is associa
with the rapid removal of bulk liquid superheat and an enhan
ment in the columnar-equiaxed transition. Increasing stirring c
rent at a constant composition promoted the columnar-equia
transition. Authors conclude that large equiaxed zones are as
ated with high velocity flows and originate from fragments of t
dendritic solidification front. Electromagnetic stirring during s
lidification of an Al alloy 7150 encouraged the formation of equ
axed grains and enhanced the columnar-equiaxed transition.
extent of the equiaxed region increased with the intensity of s
ring. The grain refining effect was accompanied by increased m
rosegregation due to displacement of the solute enriched inter
dritic liquid by the electromagnetically driven bulk liquid.

Currey and Pickles@6# constructed a laboratory-scale electr
magnetic stirrer, which was tested on two Al-Si alloys. The resu
demonstrate that electromagnetic stirring reduced the amoun
silicon segregation in the hypereutectic alloy, while in the hypo
tecticalloy stirring promoted dendrite fragmentation. Authors co
clude that electromagnetic stirring affects the solidification p
cess by the stirring action and reduces the axial porosity.

Cho et al.@7# devised and experimentally tested a special el
tromagnetic stirrer which can produce local pulsating flows a
vortex flow in molten metals. They investigated the influence
frequency, current and the waveform of current on the flow str
ture and heat transfer in the liquid In-Ga-Sn metal pool. Auth
found that the double frequency mode resulted in more effec
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Fig. 1 Experimental apparatus used for local velocity and temperature mea-
surements in molten metals and alloys
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heat transfer process compared to the single-frequency m
without incurring a decrease in the averaged flow velocity lev

As seen from the studies reviewed above, there exists a nee
techniques to measure simultaneously the temperature and
velocity components in molten metals and alloys. Laser Dopp
anemometry, interferometry, stroboscopic visualization, and o
most accurate conventional methods for velocity measurem
are not applicable in molten metals due to their opacity. The s
sors such as the Pitot-Prandtl tubes,@8#, are also ineffective due to
metal solidification within the manometric tubes. Hot wire sens
can’t be employed because of the high thermal conductivity
liquid metals and their high temperature. Therefore, perman
magnet potential probes have been developed for velocity m
surement in these media.

Ricou and Vives@9# developed an incorporated permane
magnet potential probe of cylindrical shape for local velocity a
mass transfer measurement in molten metals. In the absence
external magnetic field this probe allowed to measure the lo
velocities within the range 0–10 m/s with a sensitivity of 1 mm
The technique was applicable at temperatures as high as 720

Gelfgat et al.@10# experimentally investigated a liquid meta
flow induced by a rotating magnetic field in a cylindrical contain
using a conductive probe with a local magnetic field. Autho
obtained azimuthal velocity profiles under various field streng
A new flow regime with counterrotating fluid was observed wh
magnetic field of high frequency was applied. The fluid core w
found to rotate with negative velocity.

A rare-earth permanent magnet probe was used by Tokun
et al.@11# to study structure of turbulence in a vertical He-Wood
metal bubbling jet formed in a cylindrical vessel. Two pairs
coupled electrodes were installed at 90 deg intervals aroun
magnet. The probe enabled measurement of the radial and
velocity components simultaneously. However, the output v
ages of the probe were very low and had to be amplified in tw
stages to be processed with an A/D converter.

Weissenfluh@12# developed a similar permanent-magnet pro
for local velocity, temperature, and turbulent heat flux measu
ments in liquid metals. Theoretical expressions have been der
to estimate probe sensitivity to the velocity, temperature, and e
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tricity effects. Various probe constructions have been used in
experiments. It is shown that the probe signal is proportiona
average velocity near the permanent-magnet velocity probe.
calibration coefficient as a function of probe construction, veloc
distribution, and magnetic field has been determined experim
tally. No temperature dependence of the calibration factor
been found in these experiments. The simplified probe equatio
formulated as

DV5KU2SN8 DT, (1)

whereU is the spatial average of a velocity component;K andSN8
are factors of proportionality to be determined experimenta
DV is an electrical potential drop;DT is a temperature difference

The objective of the present paper is to describe the techn
to measure velocity, potential, and temperature distribution
molten metals during electromagnetic stirring and to present
liminary results for the liquid aluminum.

2 Experimental Apparatus and Procedure
A schematic diagram of the experimental apparatus to mea

local velocity and temperature in molten metals and alloys dur
electromagnetic stirring is illustrated in Fig. 1. A compute
controlled DC gear-motor has been used to provide a cons
rotational speed to metal sample. The motor allows making m
surements at constant speeds from 0 to 250 RPM in 5 RPM
crements. A digital stroboscope/tachometer has been used to
brate the angular speed of the motor with 0.1 RPM resolution

The metal sample was placed inside a flat-bottomed cylindri
extruded, high-purity alumina crucible. The crucible was attach
to the drive shaft of a gear-motor through a specially desig
coupling system to provide concentricity. The alumina crucib
~25 mm inside diameter and 152 mm long! filled with alloy
samples up to 100 mm high, have been exposed to magnetic
and heating. During each set of experiments it was importan
keep the sample high constant. For each sample, the mass
determined according to the required sample volume and den

As test samples we used pure lead~99.9999% purity!, tin
~99.999% purity!, aluminum ~99.9% purity!, and a low-melting
Transactions of the ASME
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alloy LMA-158. The melting temperature of this alloy is 70°C
hardness is 12 Brinell, thermal expansion is 0.27%, density is 9
g/cm3, and shear viscosity is 2.05 mPa-s at the melting point. T
alloy can be melted in hot water and can be recovered and te
over again.

The motor-driven three-dimensional positioning system
been designed and fabricated to provide a high accuracy posi
ing to the crucible with the sample, heating elements, magn
and permanent-magnet potential probe. A gear motor with a m
mum speed of 500 rpm was used in the positioning system
provide low-speed variations~0.1%!.

Quartz infrared line heating elements, housed in elliptical c
aluminum frames, were used as a furnace in the experiments.
heated length of the chamber is 167 mm. The elliptical reflec
provide concentrated infrared energy to the test specimen. H
density infrared energy is produced by tubular, high-tempera
quartz lamps~Q2000T4/CL! with tungsten wire filament emitters
The lamps supply energy~2 kW each! in the infrared region and
are housed in an array of elliptical reflectors~Fig. 2!. Copper tube
connections are provided for inlet and outlet flow of coolant~wa-
ter! to cool lamp reflector bodies. Tap water at 15°C and 600 k
was supplied to cool the unit.

Fig. 2 Diagram of sample-magnetic field-optical furnace ar-
rangement and heating energy focus action
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The magnetic field was generated by two neodymium perm
nent magnets. An MG-4D gaussmeter~Walker Scientific Inc.! op-
erating on the Hall-effect principle was used to measure the m
netic field strength. It provided DC and AC field readings fro
60.1 gauss to62 Tesla with 0.1% resolution. By changing th
distance between the magnets we could obtain a magnetic fie
desirable strength. It was significant to obtain a magnetic fi
with uniformly distributed induction. Mapping performed by th
MG-4D gaussmeter revealed that the magnetic induction varie
both vertical and horizontal directions. Contour lines for the ma
netic induction at different distances between the magnets
shown in Fig. 3. As seen from this figure, the magnetic inducti
over the test sample varies610% in the vertical direction and
67% in the horizontal direction compared to its average val
Figure 4 shows the variation of the magnetic induction with t
distance between the magnets. Neither the coupling system
the alumina crucible had perceptible disturbing effects upon
applied magnetic field.

The work principle of permanent magnet probes used in pre
ous studies,@9,12#, was based on the Faraday’s law. An electr
conductor moving through a magnetic field induces an electrom
tive force normal to the magnetic field and the direction of m
tion. This electromotive force generates an electric field prop
tional to the magnetic field intensity and to the velocity of th

Fig. 4 Variation of measured average magnetic induction with
distance between magnets
Fig. 3 Contour lines for magnetic induction „in 104 T… measured at different
distances between magnets: „a… 12 cm; „b… 9 cm; „c… 8 cm; „d… 7 cm
MAY 2003, Vol. 70 Õ 353
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conductor. The disadvantage of this method is an influence of
probe on the hydrodynamic flow structure during measureme
However, miniaturization and proper design of the probe can
duce these influences and allow the precise measuring of
components of velocity.

The permanent magnet probe shown in Fig. 5 basically m
up of a hollow cylindrical permanent magnet and two pairs

Fig. 5 Schematic diagram of constructed permanent magnet
probe „all dimensions are in millimeters …

Table 1 Magnetic and material characteristics of Sintered
Alnico 8H

Maximum energy product~Bd Hd! 5.25
Residual induction~Br.-Gauss! 7250
Coercive force~Hc-Oersteds! 1975
Intrinsic coercive force~Hc-Oersteds! 2125
Saturation magnetizing force~Hc-Oersteds! 6000
Recoil permeability 3.2
Density ~g/cm3! 7.02
Curie temperature~°C! 850
Hardness-Rockwell Rc44
354 Õ Vol. 70, MAY 2003
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electrodes situated at the opposite ends of the magnet.Sintered
Alnico 8H ~main constituents–aluminum, nickel, and cobalt! was
used as a permanent magnet. This magnetic material has a
energy product and high-temperature stability, coercivity, and
magnetization resistance. Its fine grain structure results in h
uniform flux distribution and mechanical strength. It was suited
our applications, which required short magnetic length and hi
speed motion. At temperatures as high as 700°C these mag
retain half of their magnetization property. Specifications of t
permanent magnet are given in Table 1. The two electrodes of
open-ended chromel-alumel thermocouples were used to mea
the electric potentials induced by the velocity of liquid metal. T
electrodes were housed inside a round, double bore, extruded
mina tubing.

The potential difference over the probe tip consists of contri
tions from the temperature difference between the two electro
and from several surface integrals around and within the pro
Weissenfluh@12# suggests that the measured temperature dif
ence between the two sensing points is damped by the inerti
the thermocouples and high-frequency temperature oscillat
possibly do not affect the surface integrals. In our experime
calibrating the probes has eliminated the temperature effects. C
ette flow of test samples in the liquid state has been chose
calibration experiments for the following reasons:

1. the velocity profile does not depend on viscosity of the t
sample;

2. the velocity is not a function of pressure drop which cou
create additional difficulties for probe calibration;

3. the shear rates and Reynolds numbers can be controlled
ily;

4. calibration tests can be performed with a small amount
test sample which is important to keep constant tempera
all over the liquid sample.

From the results and conclusions of the previous investigat
@9,10,12#, it becomes obvious that theoretically it is not possib
to predict the potential difference between the two sensing e
trodes of the probe as a function of the flow velocity. Therefore
is necessary to evaluate the calibration factors experimentall
schematic diagram of the experimental apparatus for the per
nent magnet probe calibration is shown in Fig. 6. A comput
controlled Brookfield rheometer Model DV-III was used to pr
Fig. 6 Experimental apparatus used for velocity probe calibration at Couette
flow
Transactions of the ASME



i

o

t

e

d
n

c

q.
id

ria-
e is
ions.

the

eld
ag-
st
vide a constant rotational speed to inner cylinder from 0 to 2
rpm in 0.1 rpm increments. A 12.7-mm diameter alumina rod w
attached to the spindle of the rheometer through a specially
signed coupling system to provide concentricity to the rotat
rod. The probe was calibrated while the crucible rotated at c
stant speed. Using the traverse device, the probe could be m
in radial and vertical directions. The alumina crucible of 54-m
inside diameter and 305 mm long with the test sample of cer
amount has been exposed to heating. A quad elliptical hea
chamber housed in an octagonal cast aluminum frame was us
calibration tests. During calibration tests, it was essential to ma
tain the sample height constant. For each metal sample the m
was determined according to the required sample volume and
sity. To eliminate the temperature effects, the potential differe
measured at the stationary liquid sample was subtracted from
potential differences obtained during the Couette flow. Figure
shows the potential difference as a function of angular velocity
liquid aluminum at different positions of the magnetic probe. T
relationship between the potential difference due to the mot
relative to the probe tip and the azimuthal component of the
locity in an annular space between the rotational rod and stat
ary crucible for liquid aluminum~99.9% purity!, lead, tin, and low
melting alloy is shown in Fig. 8. According to the regressio
analysis, these experimental data can best be described by
linear relationship

Dw5av, (2)

whereDw is a potential difference;v is a local flow velocity; and
a is a constant coefficient. With the Pearson product moment
relation coefficientR50.99 the value of this coefficient for the
given probe isa50.692 mV s/cm.

The calibration results also have been verified by compar
these data with the velocity predictions for Couette flow. The v
locity distribution for Couette flow is given by

v5
Uy

R22R1
1

~R22R1!2

2m S ]p

]x D F S y

R22R1
D 2

2S y

R22R1
D G ,

(3)

whereR1 andR2 are the radii of the inside and outside cylinder
respectively;U is a velocity at the surface of the rotational cylin
der; andm is viscosity of the liquid. For zero pressure gradie
(]p/]x50), the velocity varies linearly withy as

Fig. 7 Response of the probe as a function of angular velocity
for liquid aluminum, lead, tin, and low melting alloy LMA-158
„tip of the probe is located in jÄy Õ„R2ÀR1… and zÄ2zÕL …
Journal of Applied Mechanics
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v5
Uy

R22R1
, (4)

where the origin of coordinatey ~in the radial direction! was taken
at the stationary outer cylinder. Analytical predictions using E
~4! are shown in Fig. 9 together with experimental data for liqu
aluminum. As we can see, a normalized azimuthal velocity va
tion across the gap is linear for the aluminum sample and ther
good agreement between the experimental results and predict

3 Results and Discussion
The effect of the induced magnetic field is characterized by

magnetic Reynolds number defined as

Rem5vsem0R1
2, (5)

wherem0 is a magnetic permeability,v is an angular velocity of
fluid rotation,se is electrical conductivity, andR1 is the radius of
the sample. It represents the ratio of the induced field to the fi
of the magnetic probe. Figure 10 shows the variation of the m
netic Reynolds number with the angular velocity for the te
samples. As seen from the figure, Rem!1, which means that

Fig. 8 Calibration of magnet probe for liquid aluminum, lead,
tin, and low melting alloy LMA-158

Fig. 9 Normalized velocity profile in the annular space be-
tween the cylinders
MAY 2003, Vol. 70 Õ 355
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1. laminar flow regime has been observed in our experime
2. the influence of the induced magnetic field can be neglec

and
3. the induction of an electric field by fluctuations of the ma

netic field can be disregarded in comparison with the el
tromagnetic force.

The flow regime of the melt flow in a rotating cylindrical con
tainer is determined by the hydraulic Reynolds number, wh
represents the ratio of inertia forces to viscous forces, and is
fined by the formula

Re5
vR2r

m
, (6)

wherem andr are shear viscosity and density of the liquid met
respectively, andv is an angular velocity of fluid rotation. The
variation of the Reynolds number with angular velocity for lea
tin, and aluminum is shown in Fig. 11. As seen from this figu
the flow regime in containers for all samples are turbulent, exc
for molten aluminum at low velocities~v,13 s21!.

Another interesting criterion is the Ekman number, which d
fines the order of the vertical velocity component in rotation
flows. The Ekman number is the ratio of viscous forces to corio
forces:

Fig. 10 Variation of the magnetic Reynolds number with the
angular velocity for pure liquid lead, tin, aluminum and LMA-
158 alloy samples

Fig. 11 Variation of hydraulic Reynolds number with the angu-
lar velocity for pure liquid lead, tin, and aluminum samples
356 Õ Vol. 70, MAY 2003
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2rvL2. (7)

Figure 12 shows the variation of the Ekman number with t
angular velocity of fluid rotation. As seen from this figure,E,1
over the angular velocity range used in our experiments. Hen
according to Gelfgat et al.@10#, the velocity in the fluid core does
not depend onz.

Figure 13 represents the positions of the magnetic probe in
the molten metal. Seven points in radial and two points in verti
directions were chosen inside the liquid metal sample to meas
azimuthal velocity.

The measured potential differences at two different values
the depth of the melt are shown in Fig. 14. As seen from t
figure, at the same radial positions the potential differences
higher at 2z/L50.25 than the potential differences measured
the mid-height of the melt.

Using the calibration results described above and the meas
values of the potential differences we can determine the velo

Fig. 12 Variation of Ekman number with the angular velocity
for pure liquid lead, tin, and aluminum samples „LÄ10 cm …

Fig. 13 Positions of magnetic probe inside the liquid metal
sample
Transactions of the ASME
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profiles in liquid metal. It is possible to eliminate the dependen
of velocity profile on angular velocity of the rotation by norma
izing the local velocity (v) relative to the velocity at the wall~U!.
Measured and normalized velocity profiles for liquid aluminu
rotating in cylindrical container at different angular velocities a
presented in Fig. 15. The velocity profiles obtained for two diffe
ent values of the depth of the liquid show that the velocity in t
rotating core (r /R,0.1) does not vary significantly with depth
However, away from the core (r /R.0.1) the azimuthal velocity
at 2z/L50.25 is higher compared to the azimuthal velocity
mid-height of the melt. This phenomenon is related to the ‘‘ce
trifuging’’ effect. The fluid which rotate with the boundary layer i
thrown outwards by centrifugal forces and is replaced by flu
flowing towards the boundary layer in the axial direction. T
predictions of the normalized velocity profiles for liquid alum
num determined using an approximate theoretical model for s
body are also shown in Fig. 15. As seen from this figure, ther
some difference between the theoretical predictions and exp
mental data. This can be explained with both the errors in
measurements and the assumptions made in the theory. Unf
nately, the probe size did not allow to make measurements n

Fig. 14 Measured potential differences for liquid aluminum ro-
tating in cylindrical container at different angular velocities
„BÄ0…

Fig. 15 Measured and theoretical „for solid body … normalized
velocity profiles for liquid aluminum rotating in cylindrical con-
tainer at different angular velocities „BÄ0…
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the container wall. Further modifications in the magnetic pro
are needed to measure the velocity profile and velocity fluct
tions in a boundary layer near the wall.

Variation of measured normalized velocity profiles for liqu
aluminum rotating in cylindrical container with magnetic field in
duction ~at rotating speedv518.23 s21! is presented in Fig. 16.
As seen from the figure, the velocity values increase with m
netic induction. Figure 17 represents the variation of normaliz
azimuthal velocity with magnetic induction. These results are
good qualitative agreement with numerical simulations and
perimental data reported by previous researchers,@1,10#. Gelfgat
et al. @10# observed the counterrotation of liquid metal caused
hydrodynamic instabilities near the extreme points of the veloc
profiles. As shown in Figs. 15–17, in our experiments we cou
not observe any counter rotation. We would assume thatBz com-
ponent is negligibly small at positions where velocity was me
sured.

Following the procedure used by Weissenfluh@12# we measured
the temperature profile in an aluminum melt. To exclude the
pendence of temperature profile on wall heat flux, we normaliz
the local temperature differenceDT relative to the temperature
difference between the container wall and centerDTw . Here

Fig. 16 Measured normalized velocity profiles for liquid alumi-
num rotating in cylindrical container at different inductions of
magnetic field „vÄ18.23 sÀ1

…

Fig. 17 Variation of azimuthal velocity with magnetic induc-
tion for liquid aluminum rotating in cylindrical container at dif-
ferent distances from axis of rotation „vÄ18.23 sÀ1

…
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DT5T2To and DTw5Tw2To , (8)

T5local temperature, To5temperature in the center, an
Tw5temperature on the container wall.

The normalized temperature profile in molten aluminum at a
gular velocityv518.23 s21 is presented in Fig. 18. Using a re
gression analysis the normalized temperature profile can be
pressed by the polynomial of power two

T2To

Tw2To
5aS r

RD 2

1bS r

RD1c, (9)

wherea, b, andc are coefficients of the polynomial and they a
functions of thermophysical properties of melt and angular vel
ity of container. For molten aluminum atv518.23 s21, a
51.1763,b520.2257, andc50.021.

Conclusions
Experiments were conducted to study a liquid metal rotation

a cylindrical container exposed to the external permanent m
netic field. An experimental technique has been developed to m
sure the local velocity in molten metals. Couette flow of liqu
aluminum, lead, tin and low melting alloy in a cylindrical con
tainer was chosen for calibration of the experimental techniq
and the magnetic probe.

Potential differences and velocity profiles for liquid aluminu
rotating in a cylindrical container at different angular velociti
are obtained for two different values of the depth. It is shown t

Fig. 18 Normalized temperature profiles in rotating melt of
aluminum „vÄ18.23 sÀ1, BÄ0, zÄ0…
358 Õ Vol. 70, MAY 2003
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the velocity in the rotating core (r /R,0.1) does not vary signifi-
cantly with depth. However, away from the core (r /R.0.1) the
azimuthal velocity at depth 2z/L50.25 is higher compared to th
azimuthal velocity at mid-height of the melt.

From normalized velocity profiles for liquid aluminum rotatin
in a cylindrical container at different inductions of magnetic fie
~at rotating speedv518.23 s21! we determined that the velocity
values increase with magnetic induction.

For the molten aluminum sample we measured the tempera
profile, which was normalized to eliminate the dependence of
temperature profile on the wall heat flux. The developed techni
will allow optimizing the process parameters of electromagne
stirring.
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The Elastic-Viscoelastic
Correspondence Principle for
Functionally Graded Materials,
Revisited
Paulino and Jin [Paulino, G. H., and Jin, Z.-H., 2001, ‘‘Correspondence Principle
Viscoelastic Functionally Graded Materials,’’ ASME J. Appl. Mech.,68, pp. 129–132],
have recently shown that the viscoelastic correspondence principle remains valid
linearly isotropic viscoelastic functionally graded material with separable relaxation
creep) functions in space and time. This paper revisits this issue by addressing
subtle points regarding this result and examines the reasons behind the success or
of the correspondence principle for viscoelastic functionally graded materials. For
inseparable class of nonhomogeneous materials, the correspondence principle fai
cause of an inconsistency between the replacements of the moduli and of their deriv
A simple but informative one-dimensional example, involving an exponentially gr
material, is used to further clarify these reasons.@DOI: 10.1115/1.1533805#
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1 Introduction
The present study is motivated by a recent investigation

Paulino and Jin@1# on the correspondence principle in functio
ally graded materials~FGMs!, as discussed below. Such materia
are those in which the composition and volume fraction of
constituents vary gradually, giving a nonuniform microstructu
with continuously graded macroproperties. Various thermom
chanical problems related to FGMs have been studied, for
ample, constitutive modeling,@2#, thermal stresses,@3#, fracture
behavior,@4#, viscoelastic fracture,@5–7#, time-dependent stres
analysis, @8#, strain gradient effects,@9#, plate bending,@10#,
higher order theory,@11#, and so on. Comprehensive reviews
several aspects of FGMs may be found in the article by Hirai@12#,
the chapter by Paulino et al.@13#, and the book by Suresh an
Mortensen@14#.

One of the primary application areas of FGMs is hig
temperature technology. For example, in a ceramic/metal FG
the ceramic offers thermal barrier effects and protects the m
from corrosion and oxidation while the FGM is toughened a
strengthened by the metallic composition. Materials will exhi
creep and stress relaxation behavior at high temperatures.
coelasticity offers a reasonable basis for the study of phenom
logical behavior of creep and stress relaxation. The corresp
dence principle is probably the most useful tool in viscoelastic
because the Laplace transform of the viscoelastic solution ca
directly obtained from the existing elastic solution. The viscoel
tic correspondence principle, unfortunately, does not hold, in g
eral, for FGMs. Paulino and Jin@1#, however, have proved that th
correspondence principle of viscoelasticity and thermoviscoe
ticity is valid for a class of FGMs where the relaxation functio
in shear and dilatation,m(x,t) andK(x,t), have separable forms
i.e., m(x,t)5m(x)g(t) and K(x,t)5K(x) f (t), respectively, in
whichx denotes Cartesian coordinates,t is time, andf (t) andg(t)

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Nov. 6, 200
final revision, June 7, 2002. Associate Editor: M.-J. Pindera. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication in the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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are admissible, but otherwise arbitrary functions of time. For c
venience of presentation, let this class of viscoelastic material
called the ‘‘separable class.’’ Thus the rest of the materials con
tute the so called ‘‘inseparable class.’’ Paulino and Jin have
plied the correspondence principle to this ‘‘separable class’’
FGMs to study crack problems under antiplane shear,@5,6#, and
in-plane loading,@7#. Other authors studying crack problems
nonhomogeneous viscoelastic materials have directly solved
governing viscoelastic equations without using the corresp
dence principle. For example, Schovanec et al. have consid
stationary cracks,@15#, quasi-static crack propagation,@16#, and
dynamic crack propagation,@17#, in nonhomogeneous viscoelast
media under antiplane shear conditions. Schovanec and Wa
have also considered quasi-static propagation of a plane-s
mode I crack in a power-law inhomogeneous linearly viscoela
body, @18#, and calculated the corresponding energy release r
@19#. Although a ‘‘separable class’’ of viscoelastic materials we
studied in Refs.@15# to @19#, no use of the correspondence pri
ciple was made in their work. As a result, the mathematical c
culations in these papers become quite complicated and invol

It is important to mention some older work related to the su
ject of this paper. Hilton and Clementes@20# and Hashin@21# have
considered viscoelastic problems with piecewise constant pro
ties. Their problems are not directly relevant to the case of c
tinuously varying elastic moduli under consideration in t
present work. Schapery@22# has, in fact, considered the continu
ously varying case in which the~spatially variable! elastic moduli
also depend on the Laplace transform parameters. The present
work is concerned only with theusual class of nonhomogeneou
elastic materialsin which the moduli are functions only of the
spatial coordinatesx, not of time or of the Laplace parameter.

The present paper supplements that by Paulino and Jin@1#. It is
first shown that the success or failure of the correspondence p
ciple for linear nonhomogeneous viscoelastic materials rests u
the forms of the spatial derivatives of the relaxation functio
since these quantities appear in the equilibrium equations. T
discussion is followed by a simple but informative on
dimensional example for which closed-form solutions are o
tained for a Maxwell material under tensile loading with~a! a
separable and~b! an inseparable relaxation function. Two kinds
boundary conditions, displacement prescribed and mixed, are
sidered for this example.
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2 The Viscoelastic Correspondence Principle for Func-
tionally Graded Materials

Some of the governing equations for nonhomogeneous iso
pic linearly elastic and viscoelastic materials, under quasi-st
deformation, in the physical and Laplace transformed doma
are outlined below. The standard equations for homogeneous
coelastic materials are available in many references, e.g., C
tensen@23#.

2.1 Elasticity. The well-known constitutive equation fo
linear elastic behavior is

s i j ~x,t !5l~x!«kk~x,t !d i j 12m~x!« i j ~x,t ! (1)

wheres i j and« i j are components of the stress and strain tens
respectively,l and m are Lame´ parameters andd i j are compo-
nents of the Kronecker delta. It is useful to note thatl5K
2(2/3)m whereK andm are the bulk and shear moduli, respe
tively, of the material.

Taking Laplace transforms~when they exist! defined asf̄ (s)
5*0

` f (t)exp2st dt, ~1! becomes

s̄ i j ~x,s!5l~x!«̄kk~x,s!d i j 12m~x!«̄ i j ~x,s!. (2)

Applying the equilibrium equation~in the absence of body
forces! in the Laplace transform domain to~2!, one obtains

05s̄ i j , j~x,s!5l~x!«̄kk,i~x,s!12m~x!«̄ i j , j~x,s!1l ,i~x!«̄kk~x,s!

12m , j~x!«̄ i j ~x,s! (3)

where (•) , j5](•)/]xj .

2.2 Viscoelasticity. This time, the integral form of the con
stitutive equation, with relaxation functionsl(x,t) andm(x,t), is

s i j ~x,t !5E
0

t

l~x,t2t!
]«kk

]t
~x,t!d i j dt

12E
0

t

m~x,t2t!
]« i j

]t
~x,t!dt (4)

and its Laplace transform is

s̄ i j ~x,s!5sl̄~x,s!«̄kk~x,s!d i j 12sm̄~x,s!«̄ i j ~x,s!. (5)

Applying the equilibrium equation to~5! results in

05s̄ i j , j~x,s!5sl̄~x,s!«̄kk,i~x,s!12sm̄~x,s!«̄ i j , j~x,s!

1sl̄,i~x,s!«̄kk~x,s!12sm̄ , j~x,s!«̄ i j ~x,s!. (6)

2.3 Range of Validity of the Correspondence Principle
Consider a nonhomogeneous isotropic linear elastic material w
shear and bulk modulim~x! and K(x), respectively. Now conside
a boundary value problem for a body B with a fixed boundary]B
composed of this material. Let]Bu and ]Bt (]B5]Buø]Bt) be
parts of the boundary on which the displacements and tractio
respectively, are prescribed. It is also assumed that]Bu and ]Bt
do not vary in time. The applied boundary displacements and
tractions are allowed to be (slowly varying) functions of time–
therefore, the fields in B—displacement, strain and stress, can
be functions of time. Inertia and body forces are neglected here
this situation, the usual (quasi-static) viscoelastic corresponde
principle remains valid in general in the separable case, i.
when the (viscoelastic) relaxation functions in shear and in d
tation have the formsm(x,t)5m(x)g(t), K(x,t)5K(x) f (t), re-
spectively, where f(t) and g(t) are sufficiently well behaved
otherwise arbitrary functions of time. For the inseparable ca
the viscoelastic correspondence principle is not valid in gener.

2.4 Success of Correspondence Principle for the ‘‘Sepa
rable Class’’. The crucial step is a comparison of Eqs.~3! and
~6! and the replacements:
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l~x!⇒sl̄~x,s!, m~x!⇒sm̄~x,s! (7)

l ,i~x!⇒sl̄,i~x,s!, m ,i~x!⇒sm̄ ,i~x,s!. (8)

A sufficient condition for the validity of the correspondenc
principle is fulfilled by the ‘‘separable class’’ of linear viscoelast
materials where

l~x,t !5l~x!h~ t !, m~x,t !5m~x!g~ t !. (9)

Now

l̄~x,s!5l~x!h̄~s!, m̄~x,s!5m~x!ḡ~s! (10)

so that

l̄,i~x,s!5l ,i~x!h̄~s!, m̄ ,i~x,s!5m ,i~x!ḡ~s!. (11)

Therefore, for this ‘‘separable class’’ of materials, Eq.~6! be-
comes

05sl~x!h̄~s!«̄kk,i~x,s!12sm~x!ḡ~s!«̄ i j , j~x,s!

1sl ,i~x!h̄~s!«̄kk~x,s!12sm , j~x!ḡ~s!«̄ i j ~x,s!. (12)

With the replacements~7! and~10! for the relaxation functions,
and ~8! and ~11! for their derivatives, Eqs.~3! and ~12! are com-
patible; therefore, the correspondence principle is valid for t
‘‘separable class’’ of viscoelastic materials.

2.5 Failure of the Correspondence Principle for the ‘‘In-
separable Class’’. It is now observed that the replacements~7!,
which work for homogeneous problems, do not, in general, w
in the inseparable case. The reason for this is that the repl
ments~8! are, in general, inconsistent, in the sense that the sp
dependence ofl̄,i(x,s) and ~or! m̄ ,i(x,s) can be quite different
from those~that! of l ,i(x) and~or! m ,i(x), respectively. This issue
is rather subtle and the failure of the correspondence principle
the inseparable case is demonstrated by means of a simple
ample in Section 3 of this paper.

3 An Illustrative One-dimensional Example
This section presents a simple one-dimensional example~see

Fig. 1!, considering exponentially graded properties, to illustr
the various issues regarding the validity or not of the corresp
dence principle for viscoelastic functionally graded materi
~FGMs!. Materials with exponential gradation have been wide
used in the technical literature—see, for example, Refs.@13,14#.
In the present example, closed-form solutions are obtained f
nonhomogeneous Maxwell material under tensile loading with~a!
a separable and~b! an inseparable relaxation function. Two type
of boundary conditions, displacement prescribed and mixed,
considered here.

3.1 Relaxation Function in Tension. Consider a nonhomo-
geneous Maxwell material with tensile parametersE(x) andh(x)
as shown in Fig. 1~a!. The relaxation function of this material in
tension, together with its Laplace transform, are,@23#,

E~x,t !5E~x!expF2E~x!t

h~x! G , Ē~x,s!5
E~x!

s1E~x!/h~x!
.

(13)

Two cases are considered next:
~a! separable:E(x)5E0e2ax, h(x)5h0e2ax.
~b! inseparable:E(x)5E0e2ax, h(x)5h0 .
In the above,E0 , h0 , anda are material constants. Notice tha

a has units@ length#21 and thus 1/a expresses the length scale
inhomogeneity. Such an additional length scale characterize
FGM and influences its material behavior.

3.2 Range of Validity of Correspondence Principle

Separable Class. For case~a!, which belongs to the ‘‘sepa-
rable class,’’ one has
Transactions of the ASME
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Fig. 1 One-dimensional example; „a… nonhomogeneous Maxwell material; „b… bar un-
der tensile loading
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tion
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i-
E~x!⇒sĒ~x,s!5
sE~x!

s1E0 /h0
(14)

E8~x!⇒s
]

]x
Ē~x,s!5

sE8~x!

s1E0 /h0
. (15)

In this case, the replacements forE(x) andE8(x) are consistent
~see Eqs.~3! and ~12!! and the correspondence principle rema
valid.

Inseparable class. Now

E~x!⇒sĒ~x,s!5
sE~x!

s1E~x!/h0
5

sE0e2ax

s1~E0 /h0!e2ax . (16)

A consistent replacement forE8(x) should be

sE8~x!

s1E8~x!/h0
5

2asE0e2ax

s2a~E0 /h0!e2ax Þs
]

]x
Ē~x,s!. (17)

This time, the replacements forE(x) andE8(x) are not consis-
tent. As a result, the correspondence principle fails in the inse
rable case.

3.3 Tensile Loading on a Maxwell Bar With Displacement
Boundary Conditions. A bar, made of Maxwell material, is
loaded in tension as shown in Fig. 1~b!. The lateral surface of the
bar is traction free—so that the only nonzero stress issxx(x,t)
[s(x,t). The boundary and initial conditions on the axial di
placementu(x,t) are

u~0,t !50, u~L,t !5v0t; u~x,0!5«~x,0!5s~x,0!50
(18)

wherev0 is a constant.

Elastic Solution. Using the usual equations~here«(x,t) is the
axial strain!

«~x,t !5
]u~x,t !

]x
,

(19)

s~x,t !5E~x!«~x,t !5E0e2ax
]u~x,t !

]x
,

]s~x,t !

]x
50

together with the boundary and initial conditions~18!, one gets
the solution

u~x,t !5v0tF eax21

eaL21G , «~x,t !5
av0teax

eaL21
, s~x,t !5

aE0v0t

eaL21
.

(20)

Note that since the stress must satisfy the equilibrium equa
]s/]x(x,t)50, it must be independent ofx.
Mechanics
ns

pa-

-

tion

Case (a) ‘‘Separable Class’’—Viscoelastic Solution.The vis-
coelastic solution for this case is obtained easily by applying
correspondence principle. Carrying out the replacement

E~x!5E0e2ax⇒sĒ~x,s!5
sE~x!

s1E0 /h0
5

sE0e2ax

s1E0 /h0
,

one gets

s̄~x,s!5
aE0v0

s@s1E0 /h0#@eaL21#
,

(21)

s~x,t !5
ah0v0

@eaL21#
@12exp~2E0t/h0!#.

As expected from the correspondence principle, the solutions
«(x,t) and u(x,t) can be easily shown to be the same as
elastic solutions (20)2 and (20)1 .

Case (b) ‘‘Inseparable Class’’—Viscoelastic Solution.It is
easy to show that, in this case, an attempt to apply the corres
dence principle fails. One gets a stress solution that is a func
of x, and, therefore, does not satisfy equilibrium.

The boundary value problem to be solved is defined by
equations~see Fig. 1~a!!

]s

]x
~x,t !50, «~x,t !5

]u

]x
~x,t ! (22)

]s

]t
~x,t !1

E~x!

h~x!
s~x,t !5E~x!

]«

]t
~x,t ! (23)

together withE(x)5E0e2ax, h(x)5h0 and the boundary and
initial conditions~18!.

Taking the Laplace transform of~23!, one gets

s̄~x,s!5
sE~x!«̄~x,s!

s1E~x!/h~x!
5sĒ~x,s!«̄~x,s!. (24)

The stress must satisfy equilibrium (22)1 , i.e., it must be inde-
pendent ofx. Therefore, one can write

s̄~x,s!5sC~s!, «̄~x,s!5C~s!/Ē~x,s! (25)

where the functionC(s) must be obtained from boundary cond
tions.

Integrating (25)2 with respect tox, and using the boundary
conditions in~18!, one has

ū~L,s!5E
0

L C~s!

Ē~x,s!
dx5

v0

s2 , C~s!5
v0

s2I ~s!
(26)

whereI (s), with E(x)5E0e2ax, h(x)5h0 , is
MAY 2003, Vol. 70 Õ 361
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III
I ~s!5E
0

L dx

Ē~x,s!
5

s

aE0
~eaL21!1

L

h0
. (27)

From (25)1 , (26)2 , and ~27!, one obtains the Laplace trans
form of the stress, and then the stress as a function ofx andt. The
result is

s̄~x,s!5
v0

sF s

aE0
~eaL21!1

L

h0
G , s~x,t !5

h0v0

L
@12e2bt#

(28)

whereb5aLE0 /@h0(eaL21)#. With s(x,t) determined,«(x,t)
is obtained directly from the viscoelastic constitutive Eq.~23!.
Integrating the resulting expression for]«/]t(x,t) with respect to
t, and using the quiescent initial condition«(x,0)50, one gets the
solution for the strain distribution in the bar. This is

«~x,t !5
h0v0

LE0
Feax2

~eaL21!

aL G@12e2bt#1
v0t

L
. (29)

Note that, in this example, with the elastic strain distributi
«(x,t) in (20)2 independent ofE, «̄(x,s) from Eq. ~24! is not the
Laplace transform of the elastic solution«(x,t). In other words,
contrary to the dictates of the correspondence principle,«(x,t) in
Eq. ~29! is different from the elastic strain solution in Eq.~20!2.

Finally, integrating~29! with respect tox, and using the bound
ary conditions from~18!, leads to the solution for the displace
ment field in the bar. This is

u~x,t !5
h0v0

aLE0
Feax1

x

L
~12eaL!21G@12e2bt#1

v0xt

L
.

(30)

3.4 Tensile Loading on a Maxwell Bar With Mixed Bound-
ary Conditions. That the situation is quite subtle is evide
from considering the same example as in Fig. 1~b!, but this time
with the boundary and initial conditions

u~0,t !50, s~L,t !5s0t; u~x,0!5«~x,0!5s~x,0!50
(31)

wheres0 is a constant.

Elastic Solution. The elastic solution for this problem is easi
obtained. It is

s~x,t !5s0t, «~x,t !5
s0teax

E0
, u~x,t !5

s0teax

aE0
. (32)

Case (b) ‘‘Inseparable Class’’—Viscoelastic Solution.The
strategy here is to try the correspondence principle first and
examine the resulting solutions. Applying the corresponde
principle, one has

s~x,t !5s0t, «̄~x,s!5
s0eax

s2E0
1

s0

h0s3 ,
(33)

«~x,t !5
s0teax

E0
1

s0t2

2h0
.

It is easy to show that these solutions satisfy the equilibri
Eqs.~22!1 and the constitutive Eq.~23!, together with the bound-
ary and initial conditions~31!. Therefore, they are correct. How
ever, the correct solution for the displacement fieldu(x,t), ob-
tained by integrating (33)3 , is

u~x,t !5
s0teax

aE0
1

s0t2x

2h0
(34)

whereas the correspondence principle delivers thewrong solution
u(x,t)5«(x,t)/a.
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4 Concluding Remarks
In a recent paper in this journal, Paulino and Jin@1# have

proved that the viscoelastic correspondence principle is valid f
class of functionally graded materials~FGMs! with separable re-
laxation functions. The present paper revisits this issue and ex
ines the reasons behind the success or failure of the corres
dence principle for viscoelastic FGMs. While materi
nonlinearities, moving boundaries, or moving loads~for example!
are well-known reasons for the failure of the viscoelastic cor
spondence principle, to the best of the authors’ knowledge,
reasons for the failure of the principle due to continuously s
tially varying material~elastic and viscoelastic! properties have
not been discussed before in the literature. Schapery@22# has con-
sidered this class of problems, but not for the usual situation
which the elastic material properties depend only on spatial co
dinates. Also, it is not clear to the authors of the present pa
whether anyone has noticed before that for the inseparable cla
nonhomogeneous materials, the viscoelastic correspondence
ciple fails because of an inconsistency between the replacem
of the moduli and of their derivatives~see Eqs.~16!–~17!!.

As stated before, the correspondence principle always wo
for the ‘‘separable class’’ of materials, and does not, in general,
the ‘‘inseparable class’’ of viscoelastic materials. Examples of
plications of the correspondence principle to FGM problems
the separable class are available in Refs.@5–7#.
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A theory for the bending of cord composite laminate cylindrical shells is developed.
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Introduction
A theory for the bending of cord composite laminate cylindric

shells is developed. A cord composite consists of cords embed
in a matrix. Reviews of the cord composites literature are given
Walter @1# and Walter and Patel@2#. Typically, the approach to
determine the load-deformation relations for cord composites
been similar to the approach used for conventional compos
@3#, and the extension-twist coupling of the cords was ignor
More recently, this coupling has been taken into account in
anaysis of cord composite materials and structures by Paris,
and Costello@4#, Kittredge @5#, Shield and Costello@6–8#, Paris
@9#, and Paris and Costello@10#.

The objective of the current study is to assess the effect
changes in the geometry and/or constituents of a cord comp
laminate cylindrical shell on the load-deformation response.

The matrix is assumed to be homogeneous, linear-elastic,
isotropic. The stress-strain relations and the strain-displacem
relations in cylindrical coordinates can be found in the book
Love @11#.

Costello @12# showed that the cord axial force and twistin
moment are linearly proportional to the axial strain and twist
the cord and that the cord bending moment is linearly proportio
to the curvature of the cord. Although the axial response of
cords is different in tension than in compression, the bimodu
characteristics of the cords will be neglected. The transverse l
carrying capacity of the cords is neglected.

The Kirchhoff-Love hypothesis,@13#, is employed. That is, it is
assumed that lines straight and normal to the middle surface
fore deformation remain straight and normal to the middle surf
after deformation, that the change in the length of any line nor
to the middle surface is negligible, that the shell is thin, and t
the strains, displacements, and rotations are small. It is assu
that the cords are perfectly bonded to the matrix and that
volume of the matrix displaced by the cords can be neglected

The resulting equations for the displacements are solved
axisymmetric loading. The response due to uniformly distribu
axisymmetric end loads and uniform internal pressure is found
a semi-infinite cylinder and a finite cylinder. Other solutions a
given by Paris@9#. The results of the current study are compar
with the commonly used Gough-Tangorra and Akasaka-Hir
solutions@2#.
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Formulation
The differential equations for the displacements of a cord co

posite laminate cylindrical shell are developed. Figure 1 show
cord composite cylindrical shell with a cord ply off the midd
surface at an angle to the shell axis. Figure 2 shows a typ
element for the shell. The radius of the middle surface isa; the
thickness ish; the cord spacing isb; the distance the cord ply is
off the middle surface iszc ; the cord-ply angle isu; the cylindri-
cal coordinates arex, w, andz; and the element dimensions in th
x andw directions areDx andaDw, respectively.

Equilibrium Equations. Figure 3 shows a typical elemen
for the shell with~a! the tractions and the force resultants and~b!
the moment resultants. The tractions arepx , pw , and pz ; the
force resultants areNx , Nxw , Nwx , Nw , Qx , and Qw ; and the
moment resultants areMx , Mxw , Mwx , and Mw . It is assumed
that the force and moment resultants may be represented
Taylor series. The equilibrium equations for the element may
expressed as

]Nx

]x
1

1]Nwx

a]w
1px50, (1)

]Nxw

]x
1

1]Nw

a]w
1pw2

Qw

a
50, (2)

]Qx

]x
1

1]Qw

a]w
1pz1

Nw

a
50, (3)

]Mxw

]x
1

1]Mw

a]w
2Qw50, (4)

]Mx

]x
1

1]Mwx

a]w
2Qx50, (5)

and

Nxw2Nwx1
Mwx

a
50. (6)

Solving Eqs.~4! and ~5! for Qx andQw yields

Qx5
]Mx

]x
1

1]Mwx

a]w
and Qw5

]Mxw

]x
1

1]Mw

a]w
. (7)

Substituting Eqs.~7! into Eqs.~2! and ~3! yields

]Nxw

]x
1

1]Nw

a]w
2

1]Mxw

a]x
2

1]Mw

a2]w
1pw50 (8)

and

]2Mx

]x2 1
1]2Mxw

a]x]w
1

1]2Mwx

a]x]w
1

1]2Mw

a2]w2 1
Nw

a
1pz50. (9)
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Fig. 1 A cord composite cylindrical shell
w

r

Equations~1), (6!, ~8!, and~9! are the equations for the force an
moment resultants. There are four equations and eight unkno
and the problem is statically indeterminate.

Kinematics. Consider a circular cylindrical shell that unde
goes a deformation. The displacements of some pointA in the x,
w, and z directions areuA , vA , and wA , respectively; and the
displacements of the middle surface of the shell in thex, w, andz
directions areu, v, andw, respectively. The Kirchhoff-Love hy-
pothesis yields

uA5u2z
]w

]x
, vA5S a2z

a D v2
z]w

a]w
, and wA5w,

(10)

whereu5u(x,w), v5v(x,w), andw5w(x,w).

Strain-Displacement Relations. The strains are«x , «w , and
gxw , and the strain-displacement relations may be expressed

Fig. 2 A typical element for the shell
hanics
d
ns,

-

as

«x5
]uA

]x
, «w5

1

r S ]vA

]w
2wAD , and gxw5

1]uA

r ]w
1

]vA

]x
,

(11)

Fig. 3 A typical element for the shell with „a… the tractions and
the force resultants and „b… the moment resultants
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wherer 5a2z. The strains of the middle surface are«x
o , «w

o , and
gxw

o , and the curvatures of the middle surface arekx , kw , and
kxw . Equations~10! and ~11! yield

H «x

«w

gxw

J 5H «x
o

«w
o

gxw
o
J 2zH kx

kw

2kxw

J , (12)

where

«x
o5

]u

]x
, «w

o5
1

a S ]v
]w

2wD , gxw
o 5

1]u

a]w
1

]v
]x

,

kx5
]2w

]x2 , kw5
1

a2 S ]2w

]w2 1wD ,

and

kxw5
1

a S ]2w

]x]w
1

]v
]xD . (13)

Force and Moment Resultants. The force and moment re
sultants can be expressed as the sum of the force and mo
resultants of the matrix and the cords. The stiffness matrices
A, B, C, andD, and the components of the stiffness matrices
Ai j , Bi j , Ci j , andDi j . The force and moment resultants may
expressed as

H Nx

Nw

Nxw

Nwx

J 5AH «x
o

«w
o

gxw
o
J 2BH kx

kw

2kxw

J
and

H Mx

Mw

Mxw

Mwx

J 5CH «x
o

«w
o

gxw
o
J 2DH kx

kw

2kxw

J , (14)

where

A5F A11 A12 A16

A21 A22 A26

A61 A62 A66

A61* A62* A66*
G , B5F B11 B12 B16

B21 B22 B26

B61 B62 B66

B61* B62* B66*
G ,

(15)

C5FC11 C12 C16

C21 C22 C26

C61 C62 C66

C61* C62* C66*
G , and D5FD11 D12 D16

D21 D22 D26

D61 D62 D66

D61* D62* D66*
G .

Matrix Force and Moment Resultants. The stresses aresx ,
sw , andtxw , and the stress-strain relations may be expresse

sx5
Em

12nm
2 ~«x1nm«w!, sw5

Em

12nm
2 ~«w1nm«x!,

and

txw5
Em

2~11nm!
gxw , (16)

where Em is the modulus of elasticity andnm is the Poisson’s
ratio. The subscriptsm andc are used to denote variables relat
to the matrix and cord, respectively.

The matrix force and moment resultants are found by resolv
the stresses acting on the surface of the element of the shel
may be expressed as
366 Õ Vol. 70, MAY 2003
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Nxm5
1

aDw E
2h/2

h/2

sx~a2z!Dwdz, Nwm5
1

Dx E2h/2

h/2

swDxdz,

Nxwm5
1

aDw E
2h/2

h/2

txw~a2z!Dwdz, Nwxm5
1

Dx E2h/2

h/2

txwDxdz,

(17)

Mxm5
1

aDw E
2h/2

h/2

sx~a2z!Dwzdz, Mwm5
1

Dx E2h/2

h/2

swDxzdz,

Mxwm5
1

aDw E
2h/2

h/2

txw~a2z!Dwzdz,

and

Mwxm5
1

Dx E2h/2

h/2

txwDxzdz.

The change in these integrals due to the cross-sectional area o
cords is neglected. Equations~12! and ~14!–~17! yield the non-
zero components of the stiffness matrices:

A11m5A22m5C, A12m5A21m5nmC, A66m5
C~12nm!

2
,

A66m* 5
C~12nm!

2
1

D~12nm!

2a2 , B11m52
D

a
, B22m5

D

a
,

(18)

B66m52
D~12nm!

2a
, B66m* 5C66m* 5

D~12nm!

2a
,

C11m52
D

a
,

C12m52
Dnm

a
, D11m5D22m5D, D12m5D21m5nmD,

and D66m5D66m* 5
D~12nm!

2
,

whereC and D are the extensional and flexural rigidity, respe
tively, of the matrix:

C5
Emh

12nm
2 and D5

Emh3

12~12nm
2 !

. (19)

Simplified Equations. A simplified equation is achieved by
choosing the appropriate scaling for the coordinates and the
placements, substituting the coordinates and displacement
terms of the scaled coordinates and displacements into the e
tion, factoring the appropriate constant, and neglecting terms w
a small remaining factor. The coordinates in terms of the sca
coordinates are chosen to be

x5XAha, aw5FAha, and z5Z, (20)

whereX, F, andZ are the scaled coordinates. The displaceme
in terms of the scaled displacements are chosen to be

u5UAh

a
, v5VAh

a
, and w5W, (21)

whereU, V, andW are the scaled displacements. The coordina
in terms of the scaled coordinates and the displacements in te
of the scaled displacements given by Eqs.~20! and~21! were used
by Donnell@14#. In some cases it is necessary to expand an eq
tion in a Taylor series before applying the simplification meth
outlined above.

Applying the simplification method to the strain-displaceme
relations, Eqs.~12! and ~13!, yields
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«x
o5

]u

]x
, «w

o5
1

a S ]v
]w

2wD , gxw
o 5

1]u

a]w
1

]v
]x

,

kx5
]2w

]x2 , kw5
1]2w

a2]w2 , and kxw5
1]2w

a]x]w
. (22)

Applying the simplification method to the matrix force and m
ment resultants, Eqs.~14!, ~15!, ~18!, and~19!, yields

A11m5A22m5C, A12m5A21m5nmC,

A66m5A66m* 5
C~12nm!

2
,

(23)

D11m5D22m5D, D12m5D21m5nmD,

D66m5D66m* 5
D~12nm!

2
,

and the other components of the stiffness matrices are equ
zero. The strain-displacement relations given by Eqs.~12! and
~22! and the force and moment resultants given by Eqs.~14!, ~15!,
~19!, ~22!, and~23! are the same as those given by Donnell@14#.

Cord Force and Moment Resultants. Figure 4 shows an el-
ement with the cord axial force, twisting moment, and bend
moment. The element rectangular coordinates and principal
are x1 , x2 , andx3 . The distance the cord ply is off the middl
surface iszc , and the radius of curvature of the cord ply isrc .
The cord axial forceFc , twisting momentMtc , and bending mo-
mentMbc may be expressed as

Fc

AcEc
5C1«c1C2Rctc ,

Mtc

EcRc
3 5C3«c1C4Rctc ,

and
Mbc

EcRc
3 5C5Rckc , (24)

where Ac is the metallic cross sectional area,Rc is the outside
radius of the cord,Ec is the modulus of elasticity of the materia
«c is the axial strain,tc is the twist per unit length,kc51/rc is the
curvature, andC1 , C2 , C3 , C4 , andC5 are constants which ca
be determined analytically,@12#.

The strains are«1 , «2 , andg12, the strains of the middle sur
face are«1

o , «2
o , andg12

o , and the curvatures of the middle surfa
arek1 , k2 , andk12. The strains may be expressed as

Fig. 4 An element with the cord axial force, twisting moment,
and bending moment
Journal of Applied Mechanics
-

l to

ng
xes

,

e

H «1

«2

g12

J 5H «1
o

«2
o

g12
o
J 2zH k1

k2

2k12

J . (25)

The cord axial strain«c , change in curvaturekc , and twist per
unit lengthtc may be expressed as

«c5«1~z5zc!5«1
o2zck1 , kc5k1 , and tc5k12.

(26)

Figure 5 shows an element with~a! the tractions and the force
resultants, and~b! the moment resultants. The force resultants
N1 , N12, N21, N2 , Q1 , andQ2 , and the moment resultants ar
M1 , M12, M21, andM2 . The axial force, twisting moment, an
bending moment in the cord can be divided by the spacing of
cords and resolved into the force and moment resultants. Re
ring to Figs. 4 and 5, and comparing the force and moment res
ants with the cord axial force, twisting moment, and bending m
ment yields

N1c5
Fc

b
, M1c5

Fczc2Mbc

b
, M12c52

Mtc

b
, (27)

and the other force and moment resultants are equal to zero.
that by dividing the cord axial force, twisting moment, and ben
ing moment by the spacing of the cords that the cords are sme
out in thex2 direction but not in thex3 direction. The position of
the cord in thex3 direction is significant where bending is con
sidered.

The cord force and moment resultants may be expresse
terms of the strains and curvatures of the middle surface. An o
bar denotes the principal coordinate system. Equations~24!–~27!
yield

Fig. 5 An element with „a… the force resultants and „b… the
moment resultants
MAY 2003, Vol. 70 Õ 367
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H N1c

N2c

N12c

N21c

J 5ĀcH «1
o

«2
o

g12
o
J 2B̄cH k1

k2

2k12

J and

H M1c

M2c

M12c

M21c

J 5C̄cH «1
o

«2
o

g12
o
J 2D̄cH k1

k2

2k12

J , (28)

where the nonzero components of the stiffness matrices are

Ā11c5
AcC1Ec

b
, B̄11c5C̄11c5

AcC1Eczc

b
,

B̄16c52
AcC2EcRc

2b
,

C̄61c52
C3EcRc

3

b
, D̄11c5

C5EcRc
4

b
1

AcC1Eczc
2

b
,

D̄16c52
AcC2EcRczc

2b
, (29)

D̄61c52
C3EcRc

3zc

b
, and D̄66c5

C4EcRc
4

2b
.

Figures 6~a! and ~b! show infinitesimal triangular elements o
the cord composite with the force and moment resultants actin
them. The element rectangular coordinates arex, y, and z. The
only finite dimension is the thicknessh. The equilibrium equations
yield the transformation relations for the force and moment res
ants:

H Nx

Ny

Nxy

Nyx

J 5SH N1

N2

N12

N21

J and H Mx

M y

Mxy

M yx

J 5SH M1

M2

M12

M21

J , (30)

where the stress resultant transformation matrixS is defined as

S5F cos2 u sin2 u 2sinu cosu 2sinu cosu

sin2 u cos2 u sinu cosu sinu cosu

sinu cosu 2sinu cosu cos2 u 2sin2 u

sinu cosu 2sinu cosu 2sin2 u cos2 u

G .

(31)

The strain transformation matrix is denoted asT. The transforma-
tion relations for the strains are

H «1

«2

g12

2
J 5TH «x

«y

gxy

2
J , where

T5F cos2 u sin2 u 2 sinu cosu

sin2 u cos2 u 22 sinu cosu

2sinu cosu sinu cosu cos2 u2sin2 u
G . (32)

Equations~12!, ~25!, and~32! yield

H «1
o

«2
o

g12
o

2

J 5TH «x
o

«y
o

gxy
o

2

J and H k1

k2

k12

J 5TH kx

ky

kxy

J . (33)

Equations~28!, ~30!, and ~33! yield the transformation relation
for the stiffness matrices:
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Ac5SĀcRTR21, Bc5SB̄cRTR21,

Cc5SC̄cRTR21, and Dc5SD̄cRTR21, (34)

whereR is Reuter’s matrix defined as

R5H 1 0 0

0 1 0

0 0 2
J . (35)

Stiffnesses. The stiffnesses are the sum of the stiffnesses
the matrix and cords and may be expressed as

A5Am1(
k51

N

Ac
k , B5Bm1(

k51

N

Bc
k ,

C5Cm1(
k51

N

Cc
k , and D5Dm1(

k51

N

Dc
k , (36)

wherek indicates thekth cord ply andN is the total number of
cord plies.

Differential Equations for the Displacements of the Middle
Surface. The differential equations for the displacements of t
middle surface of the shell are found. Substituting Eqs.~14!, ~15!,
and ~22! into Eqs.~1!, ~8!, and~9! yields

Fig. 6 An infinitesimal triangular element with „a… the force
resultants and transformed force resultants and „b… the mo-
ment resultants and transformed moment resultants
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A11u91
1

a
~A161A61* !u8•1

A66*

a2 u••1A16v91
1

a
~A121A66* !v8•

1
A62*

a2 v ••2
A12

a
w82

A62*

a2 w•2B11w-2
1

a
~2B161B61* !w9•

2
1

a2 ~B1212B66* !w8••2
B62*

a3 w•••1px50, (37)

1

a
~aA612C61!u91

1

a2 ~aA211aA662C212C26!u8•1
1

a3 ~aA26

2C26!u
••1

1

a
~aA662C66!v91

1

a2 ~aA621aA262C62

1C26!v8•1
1

a3 ~aA222C22!v
••2

1

a2 ~aA622C62!w8

2
1

a3 ~aA222C22!w
•2

1

a
~aB612D61!w-2

1

a2 ~aB21

12aB662D2122D66!w9•2
1

a3 ~aB6212aB262D62

22D26!w8••2
1

a4 ~aB222D22!w
•••1pw50, (38)

and

A21

a
u81

A26

a2 u•1C11u-1
1

a
~C161C611C61* !u9•

1
1

a2 ~C211C661C66* !u8••1
C26

a3 u•••1
A26

a
v81

A22

a2 v •

1C16v-1
1

a
~C121C661C66* !v9•1

1

a2 ~C261C621C62* !v8••

1
C22

a3 v •••2
A22

a2 w2
1

a
~B211C12!w9

2
1

a2 ~2B261C621C62* !w8•2
1

a3 ~B221C22!w
••2D11w99

2
1

a2 ~D121D2112D6612D66* !w9••

2
1

a
~2D161D611D61* !w-•2

1

a3 ~2D261D621D62* !w8•••

2
D22

a4 w••••1pz50, (39)

where

~ !85
]~ !

]x
and ~ !•5

]~ !

]w
. (40)

Equations~37!–~39! are three linear, coupled, nonhomogeneo
partial differential equations with constant coefficients for t
three displacementsu, v, andw. The coupling is due in part to the
extension-twist coupling of the cords.

Results

Axisymmetric Loading. Closed-form solutions are found fo
a shell subjected to axisymmetric loading and no in-plane tr
tions. First, a general solution for the displacements is develo
Then, solutions for a semi-infinite cylinder and a finite cylind
loaded by a uniform transverse traction and by end loads are
veloped.
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The shell is subjected to axisymmetric loading and no in-pla
tractions. Therefore,

px50, pw50, and pz5pz~x!. (41)

Since the loads are functions ofx only, the displacements of the
middle surface will also be functions ofx only and may be ex-
pressed as

u5u~x!, v5v~x!, and w5w~x!. (42)

Note that although the loading is axisymmetric, the displacem
v is not assumed to be zero. Since the loads and the displacem
are functions ofx only, all derivatives with respect tow are zero.

General Solution. Solving Eqs.~37! and ~38! for u9 andv9
and integrating once with respect tox yields

u85
1

A11~aA662C66!2A16~aA612C61!
H 1

a
@A12~aA662C66!

2A16~aA622C62!#w1@~aA662C66!B11

2A16~aB612D61!#w9J 1B1 (43)

and

v85
1

A11~aA662C66!2A16~aA612C61!
H 1

a
@A11~aA622C62!

2A12~aA612C61!#w1@A11~aB612D61!

2~aA612C61!B11#w9J 1B2 , (44)

whereB1 andB2 are constants of integration to be determined
Substituting Eqs.~43! and ~44! into Eq. ~39! yields

A1w991~A21A3!w91A4w5p, (45)

where the constant coefficientsA1 , A2 , A3 , andA4 and the forc-
ing p are defined as

A15D112
1

A11~aA662C66!2A16~aA612C61!
$C11@~aA66

2C66!B112A16~aB612D61!#1C16@A11~aB612D61!

2~aA612C61!B11#%,

A25
C12

a
2

1

a@A11~aA662C66!2A16~aA612C61!#
$C11@A12~aA66

2C66!2A16~aA622C62!#1C16@A11~aA622C62!

2A12~aA612C61!#%, (46)

A35
B21

a
2

1

a@A11~aA662C66!2A16~aA612C61!#
$A21@~aA66

2C66!B112A16~aB612D61!#1A26@A11~aB612D61!

2~aA612C61!B11#%,

A45
A22

a2 2
1

a2@A11~aA662C66!2A16~aA612C61!#
$A21@A12~aA66

2C66!2A16~aA622C62!#1A26@A11~aA622C62!

2A12~aA612C61!#%,

and

p5
1

a
~A21B11A26B2!1pz . (47)

Equation~45! has the solution
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w5e2bx@B3 cos~ax!1B4 sin~ax!#1ebx@B5 cos~ax!

1B6 sin~ax!#1wp~x!, (48)

where the constantsa andb are define as

a5F1

2 S A4

A1
D 1/2

1
~A21A3!

4A1
G1/2

and

b5F1

2 S A4

A1
D 1/2

2
~A21A3!

4A1
G1/2

, (49)

B3 , B4 , B5 , andB6 are constants of integration to be determine
andwp(x) is the particular solution that depends on the transve
loadingpz(x). An alternate form of Eq.~48! is

w5D1 cosh~bx!cos~ax!1D2 cosh~bx!sin~ax!

1D3 sinh~bx!cos~ax!1D4 sinh~bx!sin~ax!1wp~x!,

(50)

where D1 , D2 , D3 , and D4 are constants of integration to b
determined. The particular problem will determine which form
the solution is most convenient.

Consider the loads that may be applied to the end of a cylin
cal shell. The force and moment resultants acting on the end o
cylindrical shell areNx , Nxw , Qx , Mx , andMxw . These are the
traction boundary conditions. Now consider the net moment
these force and moment resultants about the centerline of the
lindrical shell. The sum of the moments about the centerline o
the lengthDs5aDw is

SMCL5MxwDs2a~NxwDs!. (51)

The force resultantNxw and moment resultantMxw can be re-
solved into an equivalent shear force resultantTx acting on the
end of the cylindrical shell. Dividing both sides of Eq.~51! by
aDs yields

Tx5
SMCL

aDs
5

Mxw

a
2Nxw . (52)

When the transverse traction ispz5po1p1x, wherepo andp1
are constants, the particular solutionwp of Eq. ~45! is

wp5
1

A4
F1

a
~A21B11A26B2!1po1p1xG . (53)

Semi-Infinite Cylinder With End Loads. Consider a semi-
infinite cylinder with a constant transverse traction and end loa
The boundary conditions atx50 are Nx5N, Mx5M , Qx5Q,
andTx5T; and the transverse traction ispz5po , whereN, M, Q,
T, andpo are constants. It is most convenient to use the form
the solution forw given by Eq. ~48!. The displacementw is
bounded inx, and thereforeB5 andB6 must be zero. The particu
lar solutionwp is given by Eq.~53!, wherep150.

Applying the boundary conditionsNx5N andTx5T at x50 to
Eqs. ~14!, ~15!, ~22!, ~43!, ~44!, and ~52!, and solving for the
constants of integrationB1 andB2 yields

B15
~aA662C66!N1aA16T

A11~aA662C66!2A16~aA612C61!

and

B25
2~aA612C61!N2aA11T

A11~aA662C66!2A16~aA612C61!
. (54)

Applying the boundary conditionsMx5M and Qx5Q at x
50 to Eqs.~14!, ~15!, ~22!, ~43!, ~44!, ~48!, ~49!, and ~53!, and
solving for the constants of integrationB3 andB4 yields

B35
2A9~M2A7!1A6Q

A6A82A5A9
and B45

A8~M2A7!2A5Q

A6A82A5A9
,

(55)
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where the constantsA5 , A6 , A7 , A8 , andA9 are defined as

A55A1~a22b2!2A2 , A652abA1 ,
(56)

A752
A2

A4
F1

a
~A21B11A26B2!1poG1C11B11C16B2 ,

A85b@A1~3a22b2!2A2#,

and
A95a@A1~3b22a2!1A2#.

The constants of integrationB1 , B2 , B3 , B4 , B5 , andB6 have
been determined in terms of the loads, and thereforeu8, v8, andw
have been determined in terms of the loads. The displacemenu
andv can easily be found by integrating the equations foru8 and
v8, respectively, once with respect tox. The two new constants o
integration represent rigid-body displacements and may be
equal to zero.

Finite Cylinder With End Loads. Consider a finite cylinder
of length 2L with end loads and the transverse tractionpz5po ,
wherepo is a constant. The boundary conditions areNx5N, Mx
5M , andTx5T at x56L, Qx5Q at x52L, andQx52Q at
x5L.

It is most convenient to use the form of the solution forw given
by Eq. ~50!. The transverse tractionpz5po , and p150 in Eq.
~53!. The cylinder is symmetric about thewz-plane, and therefore
the transverse displacementw must also be symmetric, and th
constants of integrationD2 andD3 must be zero.

Applying the boundary conditionsNx5N and Tx5T at x
56L to Eqs.~14!, ~15!, ~22!, ~43!, ~44!, and~52!, and solving for
the constants of integrationB1 andB2 yields Eqs.~54!, the same
as for a semi-infinite cylinder.

Applying the boundary conditionsQx52Q and Mx5M at x
5L to Eqs.~14!, ~15!, ~22!, ~43!, ~44!, ~49!, ~50!, and ~53!, and
solving for constants of integrationD1 andD4 yields

D15
2A9~M2A7!2A6Q

A6A82A5A9
and D45

A8~M2A7!1A5Q

A6A82A5A9
,

(57)

where

A55@~a22b2!A12A2#cos~aL !cosh~bL !

12aA1b sin~aL !sinh~bL !,

A6522aA1b cos~aL !cosh~bL !

1@~a22b2!A12A2#sin~aL !sinh~bL !,
(58)

A752
A2

A4
F1

a
~A21B11A26B2!1poG1C11B11C16B2 ,

A85a@~3b22a2!A11A2#cosh~bL !sin~aL !

1b@~3a22b2!A12A2#cos~aL !sinh~bL !,

and

A95b@~3a22b2!A12A2#cosh~bL !sin~aL !

2a@~3b22a2!A11A2#cos~aL !sinh~bL !.

The constants of integrationB1 , B2 , D1 , D2 , D3 , andD4 have
been determined in terms of the loads, and thereforeu8, v8, andw
have been determined in terms of the loads. The displacemenu
andv can easily be found by integrating the equations foru8 and
v8, respectively, once with respect tox. The two new constants o
integration represent rigid-body displacements and may be
equal to zero.

The current solution is compared with the commonly used
proximate G–T and A–H solutions. Each shell considered ha
single cord ply on the middle surface. First, the results for
axially loaded semi-infinite shell are examined. Second, the
Transactions of the ASME
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sults for a semi-infinite shell loaded by an edge moment are
amined. Third, the results for an axially loaded finite shell a
examined.

The G–T equations for the in-plane material properties are

E15EcVc1Em~12Vc!,

E25
4Em~12Vc!@EcVc1Em~12Vc!#

3EcVc14Em~12Vc!
, G125Gm~12Vc!,

(59)

n1250.5, and n215n12

E2

E1
,

whereE is the tensile modulus;G is the shear modulus;n is the
Poisson’s ratio; and subscripts 1 and 2 indicate the in-plane

Fig. 7 Normalized displacements u Õa, v Õa, w Õa versus nor-
malized coordinate x Õa
-
-

l

s

-
i
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ex-
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ma-

terial properties parallel and perpendicular to the cord directi
respectively. The A–H equations for the in-plane material prop
ties are

E15EcVc , E25
4Em

3
, G125Gm , n1250.5, and

n2150. (60)

The G–T and A–H equations and the solution given by Paris@9#
are used to find the force and moment resultants and deforma
of the shell.

The cord volume fractionVc is

Vc5
Ac

bh
. (61)

The properties of the constituents, the geometry of the se
infinite cylindrical shell, and the geometry of the finite cylindric
shell are:

Fig. 8 Normalized displacement w Õa versus normalized coor-
dinate x Õa
Steel cord: Rc50.430 mm Ac50.440 mm2

Ec5200 GPa

C150.967 C250.0828 C350.187

C450.0723 C550.0638

Rubber matrix: Em510 MPa nm50.5

Shell: a50.318 m h54Rc51.71 mm Vc50.3

Finite cylinder: 2L52a50.635 m
m

ell,
f
. A
The
the
–H
and

9

n
H
ery
ly
The details of the cord material and geometry can be found
Paris and Costello@10#.

Consider a semi-infinite shell with the cords parallel to the sh
axis subjected to an axial loadN5C. Figure 7 shows the normal
ized displacementsu/a, v/a, andw/a versus the normalized co
ordinate x/a. The curves foru/a are indistinguishable for the
current, G–T, and A–H solutions. For the G–T and A–H so
tions,v/a is zero. However, for the current solution,u/a andv/a
are of the same order of magnitude. The magnitude ofv/a is
almost twice the magnitude ofu/a. The sign ofv/a is dependent
upon the lay of the cords: here the cords are right lay and the
of v/a is negative; if the cords were left lay, the sign ofv/a would
be positive. The curves forw/a are indistinguishable for the cur
rent, G–T, and A–H solutions. The shell has significant extens
twist coupling due to the extension-twist coupling of the cords

Consider a semi-infinite shell with the cords parallel to the sh
axis subjected to an edge momentM5D/a. Figure 8 shows the
normalized displacementw/a versus normalized coordinatex/a.
in

ell

u-

ign

on-
.
ell

The curve for the current solution is dramatically different fro
the curves for the G–T and A–H solutions. The curves forw/a for
the G–T and A–H solutions are very close. At the end of the sh
wherex/a is zero,w/a for the current solution is one order o
magnitude greater than those for the G–T and A–H solutions
larger displacement indicates a smaller bending stiffness.
bending stiffness for the G–T and A–H solutions is larger than
bending stiffness for the current solution since the G–T and A
solutions smear out the cords over the thickness of the shell
the current solution does not. The value ofw/a decays exponen-
tially and has nearly vanished whenx/a.1 for the current solu-
tion and whenx/a.2 for the G–T and A–H solutions. Figure
shows the normalized moment resultantMx /M versus the nor-
malized coordinatex/a. Again, the curve for the current solutio
is dramatically different from the curves for the G–T and A–
solutions. The curves for the G–T and A–H solutions are v
close. The value ofMx /M decays exponentially and has near
vanished whenx/a.1 for the current solution and whenx/a
MAY 2003, Vol. 70 Õ 371
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.2 for the G–T and A–H solutions. The values ofw/a and
Mx /M decay much more rapidly for the current solution than
the G–T and A–H solutions.

Consider a finite shell subjected to an axial loadN5C. The
cords are parallel to the shell axis. This is an intermediate len
shell based upon the analysis of a semi-infinite shell with an e
moment above. Figure 10 shows the normalized displacem
u/a, v/a, andw/a versus the normalized coordinatex/a. These
results for an axially loaded finite cylinder are similar to those
a semi-infinite cylinder given above, and the discussion is
same as the discussion given above for a semi-infinite shell
the cords parallel to the shell axis subjected to an axial loadN
5C.

Paris and Costello@10# presented an analysis of cord compos
cylindrical shells with the cords parallel to the shell axis. T
results for the current solution with the cords parallel to the sh
axis are indistinguishable from those results.

Consider a finite shell with the cords at an angle to the s
axis subjected to an axial loadN5C/1000. Figure 11 shows the
normalized displacementsu/a, v/a, and w/a versus the cord
angleu for the current and A–H solutions. The value ofu varies
from zero top/2. For the cord composite shell,Vc is 0.3. The
results for a pure rubber shell are given for comparison; a p
rubber shell has no cords, andVc is zero. The curves foru/a, v/a,
andw/a for the current and A–H solutions are indistinguishab
The normalized displacementv/a is zero whenVc is zero. Asu
increases from 0 top/2, u/a and w/a first increase and then
decrease. Whenu is greater than about 0.667 and less than ab
0.956,w/a is larger when the cord volume fractionVc is 0.3 than
when Vc is zero. Asu increases from 0 top/2, v/a is at first
negative and then positive. These trends are caused by the
son’s effect of the matrix. For small cord angles the axial strain
the cords is positive and the cords are in tension; for large an

Fig. 9 Normalized moment resultant Mx ÕM versus normalized
coordinate x Õa

Fig. 10 Normalized displacements u Õa, v Õa, w Õa versus nor-
malized coordinate x Õa
372 Õ Vol. 70, MAY 2003
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the axial strain of the cords is negative and the cords are in c
pression; and for some angle in between, the axial strain and f
in the cords are zero. Whenu is approximately 0.956, the dis
placements when the cord volume fractionVc is 0.3 are equal to
the displacements whenVc is zero, and the extension-twist cou
pling of the axially loaded shell vanishes. At this angle, the ax
strain of the cords is zero and the cords are neither in tension
compression. A similar phenomenon has been observed fo
axially loaded unidirectional cord-reinforced rubber sheet,@1#.
The shell has significant extension-twist coupling due to the co

Figures 12, 13, and 14 show the normalized displacementsu/a,
v/a, andw/a, respectively, versus the cord angleu for the cur-
rent, G–T, and A–H solutions. The curves for the current a
A–H solutions are indistinguishable, while the G–T solution
dramatically different. All solutions neglect both the transver
and shear stiffnesses of the cords. In addition, the current
A–H solutions neglect any change in the stiffnesses of the ma

Fig. 12 Normalized displacement u Õa versus cord angle u

Fig. 13 Normalized displacement v Õa versus cord angle u

Fig. 11 Normalized displacements u Õa, v Õa, w Õa versus cord
angle u
Transactions of the ASME
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due to the volume of matrix material displaced by the cords. T
G–T solution, however, accounts for the changes in the volum
the matrix material displaced by the cords, but does not incl
the transverse or shear stiffnesses of the cords. Thus, the
nesses are much smaller and the displacements are much g
for the G–T solution compared with the current and A–H so
tions.

Summary and Conclusions
An analytical method for determining the load-deformation b

havior of cord composite cylindrical shells was developed. T
differential equations for the displacements were found for a s
with cord plies at various angles to the shell axis. The equati
were solved analytically in closed form for a shell with axisym
metric loading and no in-plane tractions. The response du
uniformly distributed axisymmetric end loads and uniform inte
nal pressure was found for a semi-infinite cylinder and a fin
cylinder.

The results of the current study were compared with the co
monly used Gough-Tangorra and Akasaka-Hirano equations
some cases, the response predicted by the current, G–T, and
solutions were indistinguishable. In other cases, the current, G
and A–H solutions predicted significantly different responses. T

Fig. 14 Normalized displacement w Õa versus cord angle u
Journal of Applied Mechanics
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differences in the predicted responses can be attributed to
assumptions and approximations made in developing the cur
G–T, and A–H solutions.
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@13# Flügge, W., 1966,Stresses in Shells, Springer-Verlag, New York.
@14# Donnell, L. H., 1933, ‘‘Stability of Thin-Walled Tubes Under Torsion,’’ Na

tional Advisory Committee for Aeronautics, Report No. 479.
MAY 2003, Vol. 70 Õ 373



and
ory for
. The
r both
M. C. Ray
Mechanical Engineering Department,

Indian Institute of Technology,
Kharagpur 721302, India

Zeroth-Order Shear Deformation
Theory for Laminated Composite
Plates
In this paper a zeroth-order shear deformation theory has been derived for static
dynamic analysis of laminated composite plates. The responses obtained by the the
symmetric and antisymmetric laminates are compared with the existing solutions
comparison firmly establishes that this new shear deformation theory can be used fo
thick and thin laminated composite plates with high accuracy.@DOI: 10.1115/1.1558077#
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1 Introduction
The use of composite materials has been significantly increa

during the past decades because of their large strength to w
and stiffness to weight ratios, high thermal stability, excellent
sistance to environmental and corrosion attack, and high fat
strength. An excellent feature of composite materials is that th
materials can concurrently be designed while designing the st
tures. A great deal of researches,@1–7#, has been carried out to
wards the development of various theories for analyzing the la
nated composite structures. These theories can broadly be div
into two categories, namely, equivalent single-layer theory~ESL!
and layer-wise theories. Among the ESL theories, the class
laminated plate theory~CLPT!, @1#, is the simplest one and i
applicable to thin laminates only. This theory cannot predict
curate results for thick laminates as it does not allow to cons
transverse shear deformations. Examples of ESL theories acc
ing for transverse shear deformations are the first-order shea
formation theory~FSDT!, @2#, and the higher-order shear defo
mation theories~HSDT!, @3–6#. Although HSDT predicts a more
accurate response than the FSDT for both highly thick to t
laminates, the analysis using HSDT involves more computatio
effort than using the FSDT. However, FSDT requires the use
appropriate shear correction factor for accurate representatio
transverse shear deformations. The layerwise theories pre
highly accurate responses at the ply level where material dis
tinuities take place but the complexities involved often restra
one from using these theories.

Recently, a zeroth-order shear deformation theory~ZSDT! has
been derived by Shimpi@8#, which predicts accurate results fo
both thick and thin isotropic plates. The theory has the numbe
advantages over the CLPT and FSDT. For example, it satis
zero transverse shear stresses on the top and bottom surfac
the plates, does not require a shear correction factor and av
shear locking. However, the theory has not yet been extended
the analysis of laminated composite structures. In this paper
endeavor has been made to develop a zeroth-order shear def
tion theory for laminated composite plates.

2 Zeroth-Order Shear Deformation Theory „ZSDT…
Consider a rectangular laminated plate made ofN number of

orthotropic layers as shown in Fig. 1. The length, width, a
thickness of the plate are denoted bya, b, andh, respectively. The

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
2002; final revision, Aug. 28, 2002. Associate Editor: M.-J. Pindera. Discus
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking,
partment of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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midplane of the plate is considered as the reference plane.
origin of the laminate coordinate system (x,y,z) is located on the
reference plane (z50) in such a way thatx50, a and y50, b
indicate the boundaries of the plates. The thickness coordinaz
of the top and bottom surfaces of any~kth! layer are denoted by
hk11 andhk , respectively. The fibers of thekth layer are oriented
at an angleuk to the x-axis. The transverse displacementw is
assumed to be constant through the thickness. The derivatio
the theory first aims at satisfying the transverse shear stressessxz
and syz to be zero at the top and bottom surfaces of the pl
while giving rise to parabolic variation ofsxz andsyz across the
thickness. In order to satisfy this condition, the in-plane displa
ments,u andv at any point (x,y,z) of the laminate in thex and
y-directions, may be expressed to describe the kinematics of
formation as follows:

u~x,y,z,t !5u0~x,y,t !2z
]w~x,y,t !

]x

1
1

lx
F3

2 S z

hD22S z

hD 3GQx~x,y,t ! (1)

v~x,y,z,t !5v0~x,y,t !2z
]w~x,y,t !

]y

1
1

ly
F3

2 S z

hD22S z

hD 3GQy~x,y,t ! (2)

where,u0 andv0 are the displacements at any point (x,y,0) on the
reference plane in thex andy-directions, respectively,Qx andQy
are the transverse shear stress resultants withlx andly being the
unknown constants. Evaluation of these constants results in a
displacement theory. The constantslx andly can be determined
by considering the definitions of the transverse shear stress re
antsQx andQy . For laminated structures these are defined as

Qx5(
k51

N E
hk

hk11

sxz
k dz and Qy5(

k51

N E
hk

hk11

syz
k dz. (3)

The linear constitutive relations forkth orthotropic layer is given
by

5
sx

sy

sxy

sxz

syz

6
k

5F C11
k C12

k C16
k 0 0

C12
k C22

k C26
k 0 0

C16
k C26

k C66
k 0 0

0 0 0 C55
k C45

k

0 0 0 C45
k C44

k

G 5 «x

«y

«xy

«xz

«yz

6
k

(4)

in which sx , sy are the normal stresses in thex andy-directions,
respectively,sxy is the inplane shear stress, andCi j

k denotes the

1,
ion
De-
a–
four
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elastic constants with respect to the laminate coordinate system
the strain vector«x , «y are the normal strains,«xy is the inplane
strain, and«xz , «yz are the transverse shear strains.

Using Eqs.~1!–~2! and the linear strain-displacement relatio
for infinitesimal strains,@9#, the expressions for«xz , «yz are ob-
tained as

«xz5
1

lx
S 3

2h
2

6z2

h3 DQx and «yz5
1

ly
S 3

2h
2

6z2

h3 DQy .

(5)

It may be noted from the expressions for the in-plane displa
ments that the effect of transverse shear deformations has
incorporated in the in-plane displacements through the use
transverse shear stress resultants. Hence, the expressions for
verse shear strains given by Eq.~5! do not explicitly contain the
rotational displacements due to the transverse shear deforma
Thus the present theory may be called as a zeroth-order s
deformation theory for laminated structures. It can be obser
from ~5! that the transverse shear strains are zero at the toz
5h/2) and bottom (z52h/2) surfaces of the plate thus satisfyin
the traction free conditions forsxz andsyz . In this regard, it may
be mentioned here that the high-order shear deformation th
~HSDT! developed by Reddy@6# also satisfies the zero transver
shear stress conditions on the top and bottom surfaces of the p
But the Reddy’s theory,@6#, uses high-order rotations to accou
for the effect of transverse shear deformations whereas the pre
theory uses transverse shear stress resultants to account fo
same. Finally, using~5! in the constitutive relations forsxz , syz
and then substituting the resulting relations in~3!, lx andly can
be determined for symmetric and antisymmetric cross-ply and
tisymmetric angle-ply laminates as follows:

lx5(
k51

N

C55
k F 3

2h
~hk112hk!2

2

h3 ~hk11
3 2hk

3!G
and

ly5(
k51

N

C44
k F 3

2h
~hk112hk!2

2

h3 ~hk11
3 2hk

3!G . (6)

From Eq. ~6! it can be observed that the constantslx and ly
depend on the material properties and thickness paramete
each layer. Evaluating these constants one can proceed fo
formulation of the static and dynamic behavior of laminated pla
and shells. The next section is concerned with this formulatio
hanics
. In
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3 Analysis of Laminated Plates Using the Zeroth-
Order Shear Deformation Theory „ZSDT…

In this section, the formulation for the analysis of laminat
plates using the zeroth-order shear deformation theory derive
the previous section has been presented. Using the displace
field for ZSDT given by Eqs.~1!–~2!, the expressions for the
normal and in-plane shear strains can be written as

«x5
]u0

]x
2z

]2w

]x2 1
1

lx
F3

2 S z

hD22S z

hD 3G ]Qx

]x
,

«y5
]u0

]x
2z

]2w

]y2 1
1

ly
F3

2 S z

hD22S z

hD 3G ]Qy

]y
, (7)

«xy5
]u0

]y
1

]v0

]x
22z

]2w

]x]y

1F3

2 S z

hD22S z

hD 2G S 1

lx

]Qx

]y
1

1

ly

]Qy

]x D .

The total potential energyU of the plate is given by

U5
1

2 E0

aE
0

bS (
k51

N E
hk

hk11

~sx«x1sy«y1sxy«xy1sxz«xz

1syz«yz!dz2pwD dxdy (8)

in which p(x,y) is the externally applied distributed load actin
along thez-direction. The kinetic energyT of the plate can be
expressed as

T5
1

2 (
k51

N E
hk

hk11E
0

aE
0

b

rk~ u̇21 v̇21ẇ2!dxdydz. (9)

Substituting Eqs.~8! and~9! into Hamilton’s variational principle

dE
t1

t2
~T2U !dt50, (10)

the following governing equations are obtained:

]Nx

]x
1

]Nxy

]y
5I 0ü02I 1

]ẅ

]x
1

I 8

lx
Q̈x (11)
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8]Nxy

]x
1

]Ny

]y
5I 0v̈02I 1

]ẅ

]y
1

I 8

ly
Q̈y (12)

]2Mx

]x2 12
]2Mxy

]x]y
1

]2M y

]y2 1p

5I 0ẅ02I 1S ]ü0

]x
1

] v̈0

]y D2I 2S ]2ẅ

]x2 1
]2ẅ

]y2 D
1I 9S 1

lx

]Q̈x

]x
1

1

ly

]Q̈y

]y D (13)

]

]x S Mx2
4

3h2 PxD1
]

]y S Mxy2
4

3h2 PxyD2S Qx2
4

h2 RxD
5

I 7

lx
2 Q̈x1

I 8

lx
ü02

I 9

lx

]ẅ

]x
(14)

]

]x S Mxy2
4

3h2 PxyD1
]

]y S M y2
4

3h2 PyD2S Qy2
4

h2 RyD
5

I 7

ly
2 Q̈y1

I 8

ly
v̈02

I 9

ly

]ẅ

]y
. (15)

In Eqs. ~11!–~15!, the various stress resultants (Nx , Ny , Nxy ,
Rx , and Ry) and moment resultants (Mx , M y , Mxy , Px , Py ,
andPxy) are given by

~Nx ,Mx ,Px!5(
k51

N E
hk

hk11

sx
k~1,z,z2!dz,

~Ny ,M y ,Py!5(
k51

N E
hk

hk11

sy
k~1,z,z2!dz,

~Nxy ,Mxy ,Pxy!5(
k51

N E
hk

hk11

sxy
k ~1,z,z2!dz

and

~Rx ,Ry!5(
k51

N E
hk

hk11

z2~sxz
k ,sxz

k !dz. (16)

The various mass parameters appearing in~11!–~15! are defined
as

~ I 0 ,I 1 ,I 2 ,I 3 ,I 4 ,I 6!5(
k51

N E
hk

hk11

rk~1,z,z2,z3,z4,z6!dz,

(17)

I 75
9

4h2 I 22
6

h4 I 41
6

h6 I 6 , I 85
3

2h
I 12

2

h3 I 3 and

I 95
3

2h
I 22

2

h3 I 4 .

The study is concerned with obtaining the Navier solutions
ing the ZSDT developed here. Accordingly, two types~ss1 and
ss2! of simply supported boundary conditions admitting t
Navier solutions have been extracted from the variational p
ciple. The ss1 type boundary conditions atx50 anda are

v050, w50,
]w

]y
50, Nx50, Mx50, Px50, Qx50,

and those aty50 andb are

u050, w50,
]w

]x
50, Ny50, M y50, Py50, Qy50.

(18)

The ss2 type boundary conditions atx50 anda are
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u050, w50,
]w

]y
50, Nxy50, Mx50, Px50,

Qx50,

and those aty50 andb are

v050, w50,
]w

]x
50, Ny50, M y50, Py50, Qy50.

(19)

In order to obtain the Navier solutions, symmetric and antisy
metric cross-ply laminates and antisymmetric angle-ply lamina
are considered. The Navier method admits ss1 type boundary
ditions for symmetric and antisymmetric cross-ply laminates. F
antisymmetric angle-ply laminates ss2 type boundary conditi
must be considered for employing the Navier method. The v
ablesu0 , v0 , w, Qx , Qy can be written in terms of eigenfunction
satisfying the ss1 type boundary conditions~18! as follows:

u05 (
m51

`

(
n51

`

Umn~ t !cos
mpx

a
sin

npy

b
,

v05 (
m51

`

(
n51

`

Vmn~ t !sin
mpx

a
cos

npy

b
,

w5 (
m51

`

(
n51

`

Wmn~ t !sin
mpx

a
sin

npy

b
,

Qx5 (
m51

`

(
n51

`

Qxmn~ t !cos
mpx

a
sin

npy

b
, (20)

Qy5 (
m51

`

(
n51

`

Qymn~ t !sin
mpx

a
cos

npy

b

in which m andn indicate the mode number. For ss2 type boun
ary conditions~19! the variablesu0 , v0 are to be considered dif
ferently as

u05 (
m51

`

(
n51

`

Umn~ t !sin
mpx

a
cos

npy

b
,

(21)

v05 (
m51

`

(
n51

`

Vmn~ t !cos
mpx

a
sin

npy

b
.

In the same manner, the load function can also be expressed i
double Fourier series form as

p5 (
m51

`

(
n51

`

Pmn~ t !sin
mpx

a
sin

npy

b
(22)

where

Pmn~ t !5
4

ab E0

aE
0

b

p~x,y!sin
mpx

a
sin

npy

b
dxdy.

Using Eq.~20! or ~21!, ~16! and ~17!, the governing equilibrium
Eqs.~11!–~15! are to be written in terms of the unknown coeffi
cientsUmn , Vmn , Wmn , Qxmn, and Qymn to obtain the Navier
solutions for the laminated plates considered. It may also be
served from~6! that the values oflx andly will be of the order of
the elastic coefficientsC55 and C44. Hence the coefficients o
inertia associated with]ẅ/]x, ]ẅ/]y, Q̈x , Q̈y , ]Q̈x /]x and
]Q̈y /]y turn out to be negligibly small. Also, for symmetric an
antisymmetric laminatesI 1 and I 8 are zero. Thus the resulting
governing equations can be expressed in the matrix form as
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I 0Ümn

I 0V̈mn

I 5Ẅmn

0
0

6 1F K11 K12 K13 K14 K15

K12 K22 K23 K24 K25

K13 K23 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

G F Umn

Vmn

Wmn

Qxmn

Qymn

G
55

0
0

pmn

0
0
6 . (23)

In which the elements of matrices will differ from one type
laminate to the other. In case of antisymmetric angle-ply lamina
these are obtained as

K115~A11a
21A66b

2!, K125ab~A121A66!,

K1352~3B16a
2b1B26b

3!, K145
2ab

lx
S 3

2h
B162

2

h3 E16D ,

K155
1

ly
F S 3

2h
B162

2

h3 E16Da21S 3

2h
B262

2

h3 E26Db2G ,
K225~A22b

21A66a
2!, K2352~3B26ab21B16a

3!,

K245
ly

lx
K15,

K255
2ab

ly
S 3

2h
B262

2

h3 E26D ,

K335D11a
412~D1212D66!a

2b21D22b
4,

K3452
1

lx
F S 3

2h
D112

2

h3 F11Da31H S 3

2h
D122

2

h3 F12D
1S 3

2h
D662

2

h3 F66D J ab2G ,
K3552

1

ly
F S 3

2h
D222

2

h3 F22Da31H S 3

2h
D122

2

h3 F12D
1S 3

2h
D662

2

h3 F66D J ab2G ,
K415

2hlx

3
K14, K425

2hly

3
K24, K435

2hlx

3
K34,

K445F 1

lx
H S 3

2h
D112

4

h3 F111
8

3h5 H11Da2

1S 3

2h
D662

4

h3 F661
8

3h5 H66Db22
6

h3 D551
24

h5 F55J 11G ,
K455

1

ly
F 3

2h
~D121D66!2

4

h3 ~F121F66!1
8

3h5 ~H121H66!Gab,

K515K42, K525
2hly

3
K25, K535

2hly

3
K35, K545

ly

lx
K45,

K555F 1

ly
H S 3

2h
D222

4

h3 F221
8

3h5 H22Db2

1S 3

2h
D662

4

h3 F661
8

3h5 H66Da22
6

h3 D441
24

h5 F44J 11G ,
I 55I 2~a21b2!, a5

mp

a
, b5

np

b
.
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The stiffness parameters appearing inKi j ( i , j 51,2, . . . ,5) are
defined as

~Ai j ,Bi j ,Di j ,Ei j ,Fi j ,Hi j !

5(
k51

N E
hk

hk11

Ci j
k ~1,z,z2,z3,z4,z6!dz ~ i , j 51,2,6!.

(24)

Setting the inertia terms in Eq.~23! to zero, the solutions for
static analysis can be obtained. For dynamic analysis, the
chanical load is set to zero and the periodic solutions of the
known coefficients are assumed as

Umn~ t !5Ūmne
ivmnt, Vmn~ t !5V̄mne

ivmnt,

Wmn~ t !5W̄mne
ivmnt,

(25)
Qxmn~ t !5Q̄xmne

ivmnt, Qymn~ t !5Q̄ymne
ivmnt,

wherei 5A21, vmn is the frequency of natural vibration assoc
ated with the mode (m,n) andŪmn , V̄mn , W̄mn , Q̄xmn, andQ̄ymn
are the unknown amplitudes of vibration. In the absence of ex
nally applied mechanical load, substitution of~25! into ~23!, leads
to the following eigenvalue problem:

S F a11 a12 a13

a21 a22 a23

a31 a32 a33

G2vmn
2 F I 0 0 0

0 I 0 0

0 0 I 5

G D H Ūmn

V̄mn

W̄mn

J 5H 0
0
0
J .

(26)

The various coefficients appearing in Eq.~26! are given by

a115K111qx1K141qy1K15, a125K121qx2K141qy2K15,

a135K131qx3K141qy3K15, a215K121qx1K241qy1K25,

a225K221qx2K241qy2K25, a235K231qx3K241qy3K25,

a315K131qx1K341qy1K35, a325K231qx2K341qy2K35,

a335K331qx3K341qy3K35,

in which

qxi5
K5iK452K4iK55

K44K452K54K45
, qyi5

K5iK442K4iK54

K54K452K44K55
, ~ i 51,2,3!.

The eigenvalue problem given by Eq.~26! yields the natural fre-
quency of the laminates associated with a particular mode (m,n).

4 Results and Discussion
Numerical results for both static and dynamic analysis using

zeroth-order shear deformation theory~ZSDT! developed here are
evaluated for symmetric and antisymmetric cross-ply lamina
and antisymmetric angle-ply laminates. Two materials are con
ered for evaluating the numerical results as follows:

Material 1: EL5172.9 GPa, ET5EL/25, GLT50.5ET ,

GTT50.2ET, nLT5nTT50.25

Material 2: ET5210 GPa, ET5EL/40, GLT50.6ET,

GTT50.5ET, nLT5nTT50.25

whereEL andET are the longitudinal and transverse elastic mod
lus, GLT , GLT are the shear moduli,nLT is the major Poisson’s
ratio, andnTT is the minor Poisson’s ratio withL andT signifying
the directions parallel and perpendicular to the fiber directi
respectively.

4.1 Results for Static Analysis. For static analysis the
plates are subjected to a sinusoidally distributed transverse
and is given by
MAY 2003, Vol. 70 Õ 377
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sin
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(27)

in which q is the amplitude of the load. Accordingly, usingm
5n51 and neglecting inertia of motion, Eq.~23! can be solved
for evaluating the unknown coefficientsUmn , Vmn , Wmn , Qxmn,
and Qymn. Then using Eqs.~1!, ~2!, ~4!, and ~7!, the center de-
flection and maximum stresses are computed. The following n
dimensional parameters are used for reporting the results

w̄5
ETh3

a4q
w~a/2,b/2,0!, s̄x5

h2

b2q
sx~a/2,b/2,6h/2!,

(28)

s̄y5
h2

b2q
sy~a/2,b/2,6h/6!, s̄xy5

h2

b2q
sxy~0,0,6h/2!.

Table 1 contains the nondimensionalized center deflection
maximum in-plane stresses for symmetric cross-ply~0°/90°/0°!
square plates predicted with the ZSDT derived here. The ta
also contains the results obtained by a three-dimensional elas
solution ~ELS!, @9#, and the first-order shear deformation theo
~FSDT!, @10#. It may be observed from this table that the resu
obtained by the present zeroth-order shear deformation theor
in excellent agreement with the elasticity solutions. When co
pared with the elasticity solutions~ELS!, ZSDT predicts more
accurate results than the FSDT for both thick and thin lamina
The through thickness behavior of the plates are also exam
with the ZSDT. Figures 2–4 illustrate the distribution of in-pla
stresses across the thickness of a thick (a/h54) simply supported
~ss1! symmetric cross-ply~0°/90°/0°! square plate. Since the no
mal stresses are nonlinear across the thickness, it indicates th
ZSDT can predict warping of the cross section. Table 2 conta
the numerical results for center deflection of antisymmetric cro
ply square plates of two and six orthotropic layers. The table a
shows the prediction obtained with a HSDT,@6#, and FSDT,@10#.
It can be observed from this table, that the predictions by
ZSDT differ negligibly from that by the FSDT for both thick an
thin antisymmetric cross-ply square plates. The center deflect
of two and six layer antisymmetric simply supported~ss2! angle-
ply ~u/2u/ . . . ! square plates subjected to the sinusoidal load
have been predicted by the ZSDT for different fiber orientatio
~u! and are presented in Table 3. The predictions for the sam
the HSDT,@6#, and FSDT,@10#, are also given in Table 3 for the
purpose of comparison. It can be observed that the ZSDT
predicts the deflection for antisymmetric angle-ply square pla
with high accuracy.

4.2 Results for Dynamic Analysis. The accuracy of the
present ZSDT is also investigated through free-vibration anal
of laminated composite plates. A nondimensional frequency
rameter has been used for presenting the results as follows:

Table 1 Center deflection and in-plane stresses of square
cross-ply „0°Õ90°Õ0°… plates „Material 1 …

a/h Source w̄3102 s̄x s̄y s̄xy

ZSDT 1.922 0.735 0.528 0.050
4 FSDT 1.776 0.437 0.477 0.037

ELS 1.920 0.755 0.534 0.051
ZSDT 0.712 0.571 0.270 0.028

10 FSDT 0.669 0.513 0.254 0.025
ELS 0.700 0.590 0.288 0.028

ZSDT 0.511 0.547 0.205 0.023
20 FSDT 0.491 0.532 0.199 0.022

ELS 0.520 0.552 0.210 0.023
ZSDT 0.434 0.540 0.181 0.021

100 FSDT 0.434 0.538 0.180 0.021
ELS 0.436 0.552 0.181 0.021
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Table 4 contains the nondimensionalized fundamental frequen
v̄mn of a simply supported~ss1! cross-ply laminated~0°/90°/90°/
0°! square plate. The table also presents the results obtained
HSDT, @11#, and a closed-form solution,@12#. It may be observed
from this table that the fundamental frequencies obtained us
ZSDT are in excellent agreement with those obtained by
HSDT and closed-form solutions fora/h>10. In case of very
thick plate (a/h54), the ZSDT slightly underestimates the pr
dictions depicting further effect of transverse shear deformatio
Table 5 displays the frequencies for higher modes of symme
cross-ply~0°/90°/0°! square plates. In this case results are co
pared with those obtained by the FSDT,@10#. The comparison
indicates that the ZSDT underpredicts the frequencies indica
the pronounced effect of transverse shear deformations on

Fig. 2 Variation of in-plane normal stress sx across the thick-
ness „Material 1 …

Fig. 3 Variation of in-plane normal stress sy across the thick-
ness „Material 1 …
Transactions of the ASME
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higher modes of vibration for thick plates. The fundamental na
ral frequencies of simply supported antisymmetric cross-
square plates of two and eight orthotropic layers have been
dicted by the ZSDT for thick and thin plates and different mod
lus ratios (E1 /E2). These are presented in Table 6 and compa
with the predictions by the FSDT,@10#. The results can be ob
served to be in very good agreement with that by the FSDT,@10#.
Table 7 displays the fundamental natural frequencies of sim
supported~ss2! antisymmetric angle-ply~u/2u/ . . . ! square plates
predicted by the present ZSDT, HSDT,@10#, and FSDT,@10#, for
different fiber orientations and number of layers. Without exc
tion, the results are found to be in excellent agreement. But w
compared with the HSDT,@10#, it may be noticed that the ZSDT

Fig. 4 Variation of in-plane shear stress sxy across the thick-
ness „Material 1 …

Table 2 Deflection of simply supported „ss1 … antisymmetric
square cross-ply laminated plate „Material 1 …

N Theory

a/h

4 10 20 100

ZSDT 2.001 1.216 1.102 1.065
2 HSDT 1.998 1.216 1.102 1.065

FSDT 2.149 1.237 1.107 1.065
ZSDT 1.541 0.638 0.506 0.463

6 HSDT 1.541 0.638 0.506 0.463
FSDT 1.547 0.635 0.505 0.463

Table 3 Center deflection of simply supported antisymmetric
„ss2 … angle-ply „uÕÀuÕ . . . … laminated plate „Material 2 …

a/h Theory

u55° u530° u545°

N52 N56 N52 N56 N52 N56

4 ZSDT 1.258 1.226 1.078 0.884 1.018 0.83
HSDT 1.263 1.228 1.084 0.885 1.020 0.83
FSDT 1.316 1.265 1.215 0.899 1.157 0.85

10 ZSDT 0.481 0.445 0.591 0.300 0.557 0.27
HSDT 0.485 0.448 0.592 0.301 0.558 0.27
FSDT 0.488 0.449 0.610 0.299 0.577 0.27

20 ZSDT 0.356 0.320 0.516 0.212 0.490 0.19
HSDT 0.358 0.321 0.518 0.213 0.489 0.19
FSDT 0.359 0.321 0.522 0.212 0.494 0.19

100 ZSDT 0.316 0.279 0.494 0.184 0.467 0.16
HSDT 0.316 0.279 0.494 0.184 0.467 0.16
FSDT 0.316 0.279 0.494 0.184 0.467 0.16
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is able to predict more pronounced effects of transverse s
deformations as it underestimates the results for very thick pl
(a/h54).

Conclusions
In this paper, a zeroth-order shear deformation theory for la

nated composite plates have been derived. The following m
points can be outlined from the investigations carried out in t
paper.

Table 4 Fundamental frequency of symmetric „0°Õ90°Õ90°Õ0°…
square laminated plate „Material 2 …

a/h 4 10 20 100

ZSDT 8.966 15.061 17.641 18.835
HSDT 9.261 15.090 17.630 18.830
Closed form
solution

9.497 15.123 17.662 18.835

Table 5 Natural frequencies for higher modes of cross-ply „0°Õ
90°Õ0°… square plates „Material 1 …

m n Theory

a/h

10 100

1 2 ZSDT 18.332 22.810
FSDT 18.729 22.817

1 3 ZSDT 30.189 40.150
FSDT 30.932 40.153

2 1 ZSDT 28.875 56.075
FSDT 30.991 56.210

2 2 ZSDT 32.270 60.076
FSDT 34.434 60.211

1 4 ZSDT 44.037 66.363
FSDT 45.923 66.364

2 3 ZSDT 40.077 70.638
FSDT 42.585 70.764

Table 6 Fundamental natural frequencies of simply supported
antisymmetric „0°Õ90°Õ . . . … cross-ply square plate „Material 1 …

a/h Theory

EL /ET510 EL /ET525 EL /ET540

N52 N58 N52 N58 N52 N58

10 ZSDT 7.466 9.423 8.925 12.565 10.133 14.47
FSDT 7.454 9.450 8.900 12.628 10.027 14.56

20 ZSDT 7.807 10.098 9.495 14.229 10.871 17.14
FSDT 7.802 10.102 9.474 14.241 10.840 17.16

100 ZSDT 7.926 10.344 9.688 14.912 11.152 18.36
FSDT 7.926 10.344 9.687 14.912 11.150 18.36

Table 7 Fundamental natural frequencies of simply supported
antisymmetric „ss2 … angle-ply „uÕÀuÕ . . . … square plate
„Material 2 …

a/h Theory

u55 u530 u545

N52 N56 N52 N56 N52 N56

4 ZSDT 8.495 8.618 9.136 10.126 9.414 10.40
HSDT 8.715 8.859 9.446 10.577 9.759 10.89
FSDT 8.531 8.737 8.917 10.502 9.161 10.80

10 ZSDT 14.226 14.841 12.871 18.126 13.259 18.9
HSDT 14.230 14.848 12.873 18.170 13.263 19.02
FSDT 14.179 14.840 12.681 18.226 13.044 19.02

20 ZSDT 16.657 17.618 13.847 21.650 14.233 22.8
HSDT 16.656 17.619 13.849 21.648 14.246 22.87
FSDT 16.641 17.622 13.790 21.679 14.179 22.91

100 ZSDT 17.781 18.935 14.223 23.295 14.621 24.7
HSDT 17.780 18.935 14.223 23.295 14.621 24.73
FSDT 17.780 18.935 14.220 23.297 14.618 24.74
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1. ZSDT can predict highly accurate results for both thick a
thin laminated composite plates. For very thick plates ZSDT
derestimates the results with close accuracy thus indicating
further effect of transverse shear deformations.

2. ZSDT incorporates the effect of transverse shear defor
tions through the direct use of the transverse shear stress resu
Qx andQy .

3. As compared to FSDT, ZSDT does not require shear cor
tion factors.

4. Although FSDT can produce acceptable responses for
thick and thin laminated composite plates, it does not satisfy
zero transverse shear stress condition on the top and bottom
faces of the plates. But ZSDT satisfies this condition.

5. ZSDT is free from shear locking as its form approaches t
of CLPT when applied to a thin plate.

Based on the above points it may be concluded that the pre
zeroth-order shear deformation theory appears to be a new a
tion to the equivalent single-layer shear deformation theories.
380 Õ Vol. 70, MAY 2003
nd
n-
the

a-
ltants

ec-

oth
the
sur-

hat

sent
ddi-

References
@1# Whitney, J. M., and Leissa, A. W., 1969, ‘‘Analysis of Heterogeneous Anis

tropic Plates,’’ ASME J. Appl. Mech.,36, pp. 261–266.
@2# Whitney, J. M., 1969, ‘‘The Effect of Transverse Shear Deformation in t

Bending of Laminated Plates,’’ J. Compos. Mater.,3, pp. 534–547.
@3# Lo, K. H., Christensen, R. M., and Wu, E. M., 1977, ‘‘A High-Order Theory

Plate Deformation, Part 2: Laminated Plates,’’ ASME J. Appl. Mech.,44, pp.
669–676.

@4# Krishna Murthy, A. V., 1977, ‘‘Higher Order Theory for Vibration of Thick
Plates,’’ AIAA J., 15, pp. 1823–1824.

@5# Murthy, M. V. V., 1981, ‘‘An Improved Transverse Shear Deformation Theo
for Laminated Anisotropic Plates,’’ NASA technical Paper 1903, pp. 1–37

@6# Reddy, J. N., 1984, ‘‘A Simple Higher-Order Theory for Laminated Compos
Plates,’’ ASME J. Appl. Mech.,51, pp. 745–752.

@7# Reddy, J. N., 1990, ‘‘A Review of Refined Theories of Laminated Compos
plates,’’ Shock Vib. Dig.,22, pp. 3–17.

@8# Shimpi, R. C., 1998, ‘‘Zeroth Order Shear Deformation Theory for Plate
AIAA J., 37, pp. 524–526.

@9# Pagano, N. J., 1970, ‘‘Exact Solutions for Rectangular Bi-directional Comp
ites and Sandwich Plates,’’ J. Compos. Mater.,4, pp. 20–34.

@10# Reddy, J. N., 1997,Mechanics of Laminated Composite Plates Theory a
Analysis, CRC Press, Boca Raton, FL.

@11# Mallikarjuna and Kant, T., 1989, ‘‘Free Vibration of Symmetrically Laminate
Plates Using a Higher Order Theory With Finite Element Technique,’’ Int.
Numer. Methods Eng.,28, pp. 1875–1889.

@12# Noor, A. K., 1972, ‘‘Free Vibration of Multi-Layered Composite Plates
AIAA J., 11, pp. 1038–1039.
Transactions of the ASME



ma-
imary
r by

three-
res.

equire
an be
ented
tical
three-
nite
tional
F. Auricchio
Dipartimento di Meccanica Strutturale,

Università di Pavia,
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Refined First-Order Shear
Deformation Theory Models for
Composite Laminates
In the present work, new mixed variational formulations for a first-order shear defor
tion laminate theory are proposed. The out-of-plane stresses are considered as pr
variables of the problem. In particular, the shear stress profile is represented eithe
independent piecewise quadratic functions in the thickness or by satisfying the
dimensional equilibrium equations written in terms of midplane strains and curvatu
The developed formulations are characterized by several advantages: They do not r
the use of shear correction factors as well as the out-of-plane shear stresses c
derived without post-processing procedures. Some numerical applications are pres
in order to verify the effectiveness of the proposed formulations. In particular, analy
solutions obtained using the developed models are compared with the exact
dimensional solution, with other classical laminate analytical solutions and with fi
element results. Finally, we note that the proposed formulations may represent a ra
base for the development of effective finite elements for composite laminates.
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1 Introduction
The modeling of composite laminated structures is one of

most active research fields of the last decades, since acc
stress analyses are required to design structural parts of mec
cal, naval, aeronautical, and aerospace, as well as civil cons
tions.

In fact, composite laminates present an anisotropic respo
with extension-bending coupling and non-negligible shear de
mations in the thickness. Furthermore, to prevent the developm
of the delamination, which strongly limit the performances
composites,@1#, an accurate evaluation of the interlaminar out-o
plane stresses~i.e., the shear stress and the normal stress in
thickness direction at the interface between two adjacent lami!
is required.

Actually, several laminate models are available in the literatu
@2#. In particular, two different approaches may be distinguish
in the laminate modeling, which lead to two classes of lamin
theories: the equivalent single-layer theories~ESLTs! and the lay-
erwise theories~LWTs!.

The ESLTs represent the direct extension of plate theorie
laminates, so that the laminate is reduced to a single-layer p
with equivalent anisotropic material properties. In fact, the cla
cal laminate theory~CLT!, @3,4#, is an extension of the classica
plate theory based on Kirchhoff-Love assumptions, i.e., it negle
the shear deformation in the thickness of the laminate. The fi
order shear deformation theory~FSDT! is an extension of the
Reissner,@5#, and Mindlin, @6#, plate models to the case of lam
nated anisotropic plates. The FSDT presented in Refs.@7,8# allows
the determination of satisfactory solutions for a wide class
laminate problems. In particular, accurate results are obtaine
proper values of the shear correction factors are adopted. Un
tunately, the exact values of the shear correction factors are kn
a priori only for very simple cases,@9#. To overcome this diffi-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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culty, two different approaches can be found in literature. The fi
approach consists in the development of iterative predic
corrector techniques, as proposed by Noor and co-workers,@10–
12#. Numerical procedures, developed within the finite elem
method, were proposed in Refs.@13,14#, where new effective
laminate elements were presented. The second approach is b
on the refinement of the FSDT model, e.g., see Refs.@15,16#.
Within this context, Rolfes and Rohwer@17# and Rolfes@18# pro-
posed an improved composite finite element based on FS
which does not need the computation of the shear correction
tors. They computed the transverse shear stresses from eq
rium equations and they were able to determine a priori the sh
profile introducing suitable simplifications, i.e., neglecting t
presence of membrane forces and assuming two simultaneou
lindrical bending modes.

Several higher-order shear deformation theories were de
oped in the literature,@19,20#, within the ESLTs; they conside
higher-order terms of the thickness coordinate in the represe
tion form of the displacements.

The LWTs are obtained assuming independent shear defo
tion within each laminate layer,@21–25#, so that the displacemen
field is continuous in the thickness, while the transverse sh
strain can be discontinuous along the out-of-plane coordinate.
unknown functions for the LWTs depend on the number of lay
in the laminate. A layerwise finite element formulation, which c
be implemented in FEA commercial codes, was proposed in R
@26#; therein, Barbero discretized each layer in displaceme
based three-dimensional elements with two-dimensional k
matic constraints.

The zig-zag theories are deduced from the LWT enforcing
continuity of the out-of-plane shear stresses; thus, the numbe
unknowns in the zig-zag theories do not depend on the numbe
layers,@27–30#. In particular, Carrera@30# developed multilayer
and zig-zag theories in the framework of the Reissner mix
variational theorem.

Among the several laminate theories, the FSDT appears sim
and efficient for many structural problems. In fact, as emphasi
above, FSDT is able to predict the response of laminates w
satisfactory approximations for most structural problems. On
other hand, finite element commercial codes, mainly based
displacement formulations, requires as input data the values o
shear correction factors. Moreover, the displacement formulat

3,
ra.
eek-
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until
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of plates and laminate theories are able to recover satisfac
values for the in-plane stresses, while out-of-plane shear and
mal stresses are obtained after manipulations of the in-plane
sults by post-processing the solution,@13,14,31,32#. Post-
processing techniques are generally simple and often effic
Within finite element formulation the use of these techniques
not always straightforward. In fact, the determination of the sh
stresses from equilibrium equations requires the computatio
the in-plane stress~resultant axial forces and bending momen!
derivatives. This can be accomplished developing mixed form
tions, or displacement-based laminate finite elements chara
ized by high-degree polynomial interpolation functions,@13#. The
stress derivatives can be also computed performing regulariza
of the extensional and flexural strain,@14#. The so-called extended
two-dimensional method presented by Rolfes et al.@32# does not
requires the computation of the stress derivatives; in fact, the
sumption of neglecting the membrane forces and of conside
the presence of two simultaneous cylindrical bending simplify
laminate equations, so that the bending moment derivatives
equal to the resultant shear stresses.

Furthermore, it can be emphasized that the FSDT allows
determine satisfactory values for the in-plane and out-of-pl
stresses. Thus, once the most stressed zones of the lamina
determined using the FSDT, layerwise or zig-zig theories can
adopted in these zone to investigate on the possible delamin
and failure.

Aim of the present paper is the development of suitable
viable laminate models based on the equivalent single la
theory. In particular, refined FSDT models, based on new pa
mixed formulations, are developed, without introducing any s
plification on the laminate problem.

The following features characterize the proposed approach

• It does not need shear correction factors.
• It does not need to post-process the in-plane solution to

out-of-plane shear stresses.
• It may represent the basis for the development of new

efficient laminate finite elements.

The proposed approach is based on a variational formula
that considers the out-of-plane shear stresses as primarily
ables of the problem. A new approach is proposed; in fact,
shear stress profile introduced in the partial mixed functiona
obtained considering new independent variables or it is dedu
from the three-dimensional local equilibrium equations. In fa
the explicit expression of the shear stresses is obtained by
grating the first two equilibrium equations with respect to t
thickness direction. Thus, the shear stresses are expressed as
tions of the in-plane stresses, which can be written as funct
either of the in-plane strains or of the displacement and rota
fields. Hence, several formulations are obtained. In order to as
the performances of the proposed models, analytical solutions
determined for the proposed models. It can be emphasized
analytical solutions are available only for special cases; in f
simply supported rectangular cross-ply and angle-ply lamina
are considered within the paper. The solutions computed for
proposed models are compared with the exact three-dimens
solution, @33#, with other classical laminate analytical solution
@2#, and with finite element results,@13#.

In the following the subscript comma indicates the partial d
rivative f ,a5] f /]xa and f ,z5] f /]z.

2 First-Order Shear Deformation Theory „FSDT…
Laminate Model

A laminate plateV refers to a flat body, with constant thickne
h:

V5H ~x1 ,x2 ,z!PR3/zPS 2
h

2
,
h

2D ,~x1 ,x2!PA,R2J (1)
382 Õ Vol. 70, MAY 2003
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where the planez50 identifies the midplaneA of the undeformed
plate. The laminate is made ofn layers and the typicalkth layer
lies between the thickness coordinatesz5zk and z5zk11 , such
that z152h/2 andzn115h/2.

The first-order shear deformation theory can be obtained in
ducing suitable assumptions on both the strain and the stress fi
defined in the three-dimensional continuous bodyV, as empha-
sized in @34# for the case of homogeneous plates. In fact,
FSDT for laminated plates is based on the following well-know
assumptions,@35#:

1. The through-the-thickness transverse normal stress is
i.e., szz50.

2. Straight lines perpendicular to the midplane cannot
stretched, i.e.,«zz50.

3. Straight lines perpendicular to the midplane remain strai
after deformation, i.e.,«1z,z5«2z,z50.

Displacement Field. The kinematics is restrained to satis
the following conditions:

«zz50 «1z,z5«2z,z50 (2)

which leads to the classical representation form for the displa
ment field:

s~x1 ,x2 ,z!5u~x1 ,x2!1zw~x1 ,x2!

sz~x1 ,x2 ,z!5w~x1 ,x2! (3)

where

s5 H s1

s2
J u5 Hu1

u2
J w5 Hw1

w2
J (4)

with u and w the vectors of the midplane membrane displac
ments and rotations, respectively.

Strain Field. Denoting by« i j the typical component of the
strain tensor, the in-plane strain vector«5$«11 «22 2«12%

T, asso-
ciated to the displacement representation~3!, is written as

«5e1zk (5)

where the membrane strain vectore and the curvature strain vec
tor k are given by

e5Lu k5Lw L5F ]

]x1
0

0
]

]x2

]

]x2

]

]x1

G . (6)

The in-plane strain vector« is a linear function of the thicknes
coordinatez.

The out-of-plane strain field vectorg5$2«1z 2«2z%
T is obtained

as

g5¹w1w (7)

where the symbol¹ indicates the gradient operator.

Stress Field. The in-plane stresses within each lamina of t
composite laminate are computed using the constitutive relat
ships. In particular, it is assumed that the bodyV is obtained
assembling in a staking sequence orthotropic layers, withz50
representing a plane of material symmetry. Thus, denoting bys i j
the typical component of the stress tensor, the in-plane stress
tor sk5$s11

k s22
k s12

k %T for the kth lamina is given by

sk5Ck«5Ck~e1zk! (8)

where Ck is the so-called reduced in-plane constitutive elas
matrix associated to thekth lamina. Note thatCk is derived from
Transactions of the ASME
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the three-dimensional constitutive matrix, enforcing the condit
1, i.e., szz50, @34#. Since each lamina of the laminate prese
different elastic properties, the in-plane stress vectors is a dis-
continuous piecewise linear function of the coordinatez.

The out-of-plane shear stress vectoruk5$u1z
k u2z

k %T can be
evaluated through constitutive equation as

uk5Qkg (9)

whereQab
k 5xabQ̃ab

k with a,b51,2. Note thatQ̃ab
k are the com-

ponents of the shear elastic matrix of thekth lamina andxab are
the shear correction factors. As it is well known, the transve
shear stress vector computed by formula~9! is absolutely unsatis-
factory; in fact, formula~9! leads to a transverse shear stress fi
which is not equilibrated at the interfaces of adjacent laminae
it does not satisfy the boundary conditions on the top and on
bottom of the laminate.

A satisfactory field for the out-of-plane shear stress vectot
5$t1z

k t2z
k %T can be recovered using the equilibrium equations

the following no body forces and no tangential surface forces
the top and bottom of the laminate are considered; thus, the e
librium equations give

t52E
2h/2

z

LTsd§, (10)

i.e., in components

taz52E
2h/2

z

~sa1,11sa2,2!d§ with a51,2. (11)

Note that, according to formula~11!, it implicitly results
t(2h/2)50; the further boundary conditiont(h/2)50 has also
to be satisfied.

Once the shear stresses in the laminate thickness are d
mined, the transverse normal stress, which is very important
the delamination failure, can be determined adopting a p
processing method, i.e., by integrating with respect toz the third
equilibrium equation:

szz52E
2h/2

z

~t1z,11t2z,2!d§. (12)

It can be emphasized that the in-plane strain components~5! are
linear functions of thez thickness coordinate, so that the in-pla
stresses~8! are piecewise linear functions ofz. As a consequence
the transverse shear stresses computed by the equilibrium Eq~10!
are piecewise quadratic functions. Since the piecewise quad
shear stress profiles computed by Eq.~10! are widely recognized
as the best transverse shear stresses evaluation, within the F
model, it can be assumed as basis for the model construction
condition that the through-the-thickness shear stressessaz are
continuous piecewise quadratic functions of thez-coordinate.

A classical problem arising in conjunction with the use of t
FSDT is the determination of the shear factorsx11, x22, andx12

appearing in the matrixQk of Eq. ~9!. Denoting byEt andEu the
complementary shear energies in the thickness obtained cons
ing the t and u shear profiles, respectively, characterized by
same resultant shear stress, the shear correction factors are
mined enforcingEt5Eu. The exact values ofx11, x22, andx12
can be evaluated analytically only for special cases. In particu
Whitney @9# derived an analytical formula of the shear correcti
factor for the case of cross-ply laminates in cylindrical bendi
For a more general case, it is possible to evaluate the shear
rection factors developing an iterative procedure. This can
based on the determination of the displacement solution, of
plane stresses computation via constitutive equations, of
equilibrated shear stresses, of the complementary shear ene
and, finally, of new shear correction factors which are adopte
compute a new solution, and so on,@13#.
Journal of Applied Mechanics
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3 Variational Formulation
A mixed functional for the three-dimensional laminate-lik

body V is now considered:

H~u,w,w,e,k,g,s,t!5Hmb~u,w,e,k,s!1Hs~w,w,g,t!2Pext
(13)

where Hmb is a Hu-Washizu functional accounting for th
membrane-bending terms,Hs is a Prange-Hellinger-Reissne
functional accounting for the transverse shear terms andPext ac-
counts for the boundary conditions and loading forces.

In particular, the membrane-bending functionalHmb and the
transverse shear functionalHs are written as

Hmb~u,w,e,k,s!5
1

2 EV
~e1zk!TC~e1zk!dv

1E
V

@~Lu2e!1z~Lw2k!#Tsdv (14)

Hs~w,w,t!5E
V

~¹w1w!Ttdv2
1

2 EV
tTTtdv (15)

whereTk5(Qk)21 is the shear compliance matrix of thekth layer.
Performing the integration along the thickness coordinate,

membrane-bending mixed functional~14! takes the form

H̃mb~u,w,e,k,N,M !5
1

2 EA
~eTAe12eTBk1kTDk!dA

1E
A
$@~Lu !2e#TN1@~Lw!2k#TM%dA.

(16)

The matricesA, B, andD represent the membrane, the membran
bending coupling and the bending elastic stiffness matrices ofn
layer laminate, respectively, defined by equations

A5(
k51

n

Ck~zk112zk! (17)

B5
1

2 (
k51

n

Ck~zk11
2 2zk

2! (18)

D5
1

3 (
k51

n

Ck~zk11
3 2zk

3!. (19)

Moreover, the resultant membrane force and bending mom
vectors,N andM , are defined as

N5E
2h/2

h/2

sdz M5E
2h/2

h/2

zsdz. (20)

Because of the constitutive Eqs.~8!, taking into account the defi-
nitions ~17!, ~18!, and~19!, it results:

N5Ae1Bk M5Be1Dk. (21)

Hence, the mixed functional~13! for the laminate can be writ-
ten in terms of the introduced resultant forces and bending
ments as

H̃~u,w,w,e,k,g,N,M ,t!5H̃mb~u,w,e,k,N,M !

1Hs~w,w,g,t!2Pext . (22)

A full displacement formulation of the membrane-bendi
functional H̃mb is recovered, implicitly satisfying the resultan
constitutive laws~21! and the compatibility Eqs.~6!:
MAY 2003, Vol. 70 Õ 383
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Emb~u,w!5
1

2 EA
@~Lu !TALu 12~Lu !TBLw1~Lw!TDLw#dA.

(23)

It can be emphasized that different laminate models can
recovered depending on the expression considered for
through-the-thickness shear stress. In particular, two classe
models are herein considered:

• The shear stress profile are approximated introducing in
pendent variables.

• The shear stress profile are written as function of the m
plane strains and curvatures using the equilibrium Eqs.~10!.

In the following, four variational formulations of the laminat
problem are derived, considering different representation form
the out-of-plane shear stress vector.

4 Independent Approximation of the Shear Stresses
The first refined model, denoted in the following as RM1,

derived considering independent approximations of the sh
stresses. In fact, the shear stress profile is represented as a
tinuous piecewise quadratic function in the thickness, satisfy
the boundary conditions. Hence, within thekth layer, it is assumed

tk5to
k

zk112z

zk112zk
1to

k11
z2zk

zk112zk
2tk~zk112z!~z2zk! (24)

with to
15to

n1150. In the formula~24! to
k represents the shear stre

vector at the interface between the layersk21 and k, while tk

gives the curvature profile of the shear stress inkth layer.
Introducing the representation formula~24! in the transverse

shear energy~15!, it applies

H̃s52
1

2 E A(
k51

n

@ ~Rkto
k!Tto

k1~Rkto
k11!Tto

k2~R̃ktk!Tto
k#dA

12
1

2 EA
(
k51

n

@ ~Rkto
k11!Tto

k112~R̃ktk!Tto
k11#dA

12
1

2 EA
(
k51

n

@~R̂ktk!Ttk#dA1E
A
~¹w

1w!T(
k51

n
zk112zk

2 S to
k1to

k112tk
~zk112zk!

2

3 DdA (25)

where

Rk5
zk112zk

3
Tk R̃k5

~zk112zk!
3

6
Tk R̂k5

~zk112zk!
5

30
Tk.

(26)

Finally, the mixed functional~22! takes the form

Ĥ~u,w,w,e,k,N,M ,to
2,..,to

n ,t1,..,tn!

5H̃mb~u,w,e,k,N,M !1Ĥs~w,w,to
2,..,to

n ,t1,..,tn!2Pext .

(27)

The number of the unknowns in the FSDT refined model R
depends on the number of layers. Since the transverse shear
profile does not depend on the in-plane stresses, the memb
and bending terms can be written adopting a full displacem
approach functional, substitutingH̃mb with Emb in Eq. ~27!.

The presented approach leads to serious drawbacks. In fac
stationary condition of the mixed functional~22! with respect to
the shear stresst gives
384 Õ Vol. 70, MAY 2003
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s~w,w,t!5E

V
~¹w1w!Tdtdv2

1

2 EV
tTTdtdv

(28)

i.e., Tktk5¹w1w; thus, Eq.~28! represents the complementa
constitutive equation written in variational form. Because of t
displacement representation form~3! for the FSDT, the second
term of Eq. ~28! is constant in the thickness, so that the she
stress vectort is enforced to be piecewise constant in the thic
ness. When the stresst is represented by formula~24!, the varia-
tional Eq. ~28! enforces the constitutive law in approximate
form; enlarging the space of the shear parametersto

2,..,to
n ,t1,..,tn,

i.e., increasing the number of independent parameters defining
stresst given by formula~24!, the constitutive Eq.~28! tends to
be enforced in a stronger manner, so that the shear stress p
tends to become piecewise constant in the laminate thicknes

5 Equilibrated Shear Stress

5.1 Shear Stress Computation. The out-of-plane shea
stresst, computed using the equilibrium Eqs.~10!, is a continuous
piecewise quadratic function of the thickness coordinate; thus,
transverse shear stresstk at thekth lamina is given by

tk~z!52E
zk

z

LTskd§1to
k (29)

whereto
k is the stress evaluated atz5zk :

to
k52E

2h/2

zk

LTsd§. (30)

Substituting the expression~8! into the formula~30! gives

to
k52E

2h/2

zk

LTC~e1§k!d§52LT~Âke1B̂kk! (31)

with

Âk5(
i 51

k21

Ci~zi 112zi ! B̂k5
1

2 (
i 51

k21

Ci~zi 11
2 2zi

2!. (32)

Then, taking into account expressions~8! and~31! and perform-
ing the integration in the thickness, the out-of-plane shear strestk

~29! becomes

tk~z!52LTF ~z2zk!C
ke1

1

2
~z22zk

2!CkkG2LT~Âke1B̂kk!

52LT~Ak~z!e1Bk~z!k! (33)

where

Ak~z!5~z2zk!C
k1Âk

Bk~z!5
1

2
~z22zk

2!Ck1B̂k. (34)

Moreover, in order to satisfy the boundary conditiont(h/2)
50 exactly, the formula~33! is enhanced by adding a linear ter
which is zero atz52h/2:

tk~z!52LT~Ak~z!e1Bk~z!k!1aS z1
1

2
hD . (35)

The vectora is evaluated enforcing the boundary condition:

05tn~h/2!52LT~Ae1Bk!1ah (36)

where An(h/2)5A and Bn(h/2)5B are the membrane an
membrane-bending coupling elastic matrices of the laminate
fined by Eqs.~17! and ~18!, respectively. Solving Eq.~36! with
respect to the vectora, we obtain
Transactions of the ASME
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LT~Ae1Bk!. (37)

Substituting expression~37! into formula~35!, the out-of-plane
shear stresstk takes the form

tk~z!52LTH FAk~z!2
1

h S z1
1

2
hDAGe

1FBk~z!2
1

h S z1
1

2
hDBGkJ . (38)

A suitable form for the expression of the out-of-plane sh
stresstk, useful for the next developments, is proposed. In fa
the formula ~38! can be rewritten in the following equivalen
form:
d
t

Journal of Applied Mechanics
ar
ct,
t

tk~z!52LT@~Ak~0!1zAk~1!!e1~Bk~0!1zBk~1!1z2Bk~2!!k#
(39)

where

Ak~0!5Âk2zkC
k2

1

2
A A k~1!5Ck2

1

h
A (40)

Bk~0!5B̂k2
1

2
zk

2Ck2
1

2
B Bk~1!52

1

h
B Bk~2!5

1

2
Ck.

(41)

Next, several refined FSDT laminate formulations, based on
use of equilibrated shear stresses, are derived.

5.2 Refined Model RM2. The FSDT refined model RM2 is
deduced substituting the expression~39! of the transverse shea
stress vectort, obtained from the three-dimensional equilibriu
equations, into the mixed shear functionalH̃s defined in ~15!.
Thus,
H̄s5E
A
(
k51

n H 1

2
TkLTXk~0!e1TkLTYk~0!kJ T

LTAk~0!edA1E
A
(
k51

n H 1

2
TkLTXk~1!e1TkLTYk~1!kJ T

LTAk~1!edA

1
1

2
E

A
(
k51

n

@TkLTYk~0!k#TLTBk~0!kdA1
1
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2 2zk
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The mixed functional~22! for the model RM2 takes the form

H̄~u,w,w,e,k,N,M !5H̃mb~u,w,e,k,N,M !1H̄s~w,w,e,k!2Pext .
(45)

The number of the unknowns in the FSDT refined RM2 mo
does not depend on the number of layers; this fact represen
advantageous feature of the proposed RM2 formulation with
spect to the RM1 model.
el
s an
re-

5.3 Refined Model RM3. A possible disadvantage of th
refined model RM2 is represented by the large number of
known functions with respect to the classical full displacem
formulation. In fact, functional~45! depends on five displacemen
parameters (u1 ,u2 ,w,w1 ,w2), on six midplane strains and curva
tures (e11,e22,e12,k11,k22,k12) on six axial and bending result
ants (N11,N22,N12,M11,M22,M12).

As matter of fact, in the membrane-bending Hu-Washizu fu
tional H̃mb, defined by Eq.~16!, the resultant stress vectorsN and
M can be regarded as the Lagrange multipliers of the constra
corresponding to the compatibility Eqs.~6!. The FSDT refined
model RM3 is obtained implicitly satisfying the compatibilit
Eqs. ~6! in the membrane-bending Hu-Washizu functional~16!;
thus, the full displacement membrane-bending functional~23! is
obtained. Moreover, the penalty approach is adopted to enf
the constraint~6! in the mixed functional~42!; in fact, a penalty
term is added into the governing functional, which results in

Ẽ~u,w,w,e,k!5Emb~u,w!1H̄s~w,w,e,k!1L~u,w,e,k!2Pext
(46)

where the penalty termL is defined by

L5
1

2h E
A
@~Lu2e!T~Lu2e!1~Lw2k!T~Lw2k!#dA (47)

with h the penalty parameter.
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According the penalty method, the resultant stresses are
duced as

N5
1

h
~Lu2e! M5

1

h
~Lw2k! (48)
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de-5.4 Refined Model RM4. The refined model RM4 is base
on the full displacement-based variational formulation. In fact
is obtained enforcing the strain displacement Eqs.~6! in the shear
functional ~42!. Thus, the functionalH̄s-becomes
H5 s5E
A
(
k51

n H 1

2
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Hence, the full displacement functional governing the lamin
problem is

E5~u,w,w!5Emb~u,w!1H5 s~w,u,w!2Pext . (50)

The recovered potential energy functional~50! appears very
appealing since it presents only five unknown functions, i.e.,u1 ,
u2 , w, w1 , andw2 . On the other hand, second-order derivativ
of the in-plane displacement and the rotation vectors, i.e.,u andw,
appear in the functionalE5 . From a numerical point of view, the
presence of the second-order derivatives of the unknown funct
in the governing functional could represent a drawback. In fact
the perspective of developing suitable finite laminate eleme
based on refined FSDT theories, a greater continuity of the in
polation functions is required.

6 Numerical Applications
With the aim of verifying the accuracy of the proposed FSD

refined models, some numerical calculations are developed.
sults are carried out for homogeneous plates as well as for c
posite laminates. In particular, square plates, characterized b
in-plane dimensiona and subjected to transversal sinusoidal loa
ing, are considered. The laminates have the side to thickness
r5h/a50.10. The following elastic properties are introduced
the computations:

EL

ET
525, nLT50.25,

GLT

ET
50.5,

GTT

ET
50.2 (51)

which correspond to a strongly orthotropic graphite-epoxy ma
rial. The subscriptsL andT indicate the longitudinal and transve
sal principal material directions.

6.1 Cylindrical Bending. Initially, homogeneous and cross
ply laminated plates in cylindrical bending, subjected to the si
soidal loadp5p0 sin(ax) with a5p/a, are studied. In particular
antisymmetric@0/90# and symmetric@0/90/0# laminates are con-
sidered. In Table 1, the results obtained using the refined mo
are put in comparison with the exact three-dimensional analyt
solution (3D2AS) obtained by Pagano@33# and with those recov-
ered through the classical Mindlin-Reissner theory~FSDT!. In
particular, FSDT solutions are obtained considering the shear
rector factorx equal to x055/6 and the exact value of shea
corrector factor proposed by WhitneyxW , @8#. Results are re-
ported in terms of the dimensionless maximum displacementwmax
defined as

wmax5100
ETwC

p0hr4 (52)
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wherewC represents the transversal displacement occuring in
center of the laminate, i.e.wC5w(a/2,a/2).

It is apparent the effectiveness of the refined models RM
RM3, and RM4. In fact, RM2, RM3, and RM4 results are
perfect agreement with the FSDTxW and 3D2AS solutions; in
other words, the RM2, RM3, and RM4 approaches are able
recover the FSDTxW model without the use of the shear corre
tion factors. Moreover, the RM1 appears satisfactory for the
mogeneous plate and for the antisymmetric@0/90# laminate, while
it is absolutely unsatisfactory when the symmetric@0/90/0# lami-
nate is considered.

In Fig. 1 the dimensionless shear stress profilet1z /p0 for the
homogeneous plate in cylindrical bending is reported. The res
obtained by the four proposed refined models, i.e., RM1, RM
RM3, and RM4, are compared with the shear stress derived by
analytical three-dimensional solution. It can be noted the per
agreement between all the computed solutions with the e
three-dimensional solution.

Then, the homogeneous plate in cylindrical bending is stud
considering fictitious staking sequences of one layer@0#, three
equal layers@0/0/0# and ten equal layers@0/0/0/0/0/0/0/0/0/0#. Re-
sults in terms of dimensionless shear stress profilet1z /p0 in the
plate thickness are reported in Fig. 2. It can be noted that
RM2, RM3 and RM4 proposed models lead all to the same so
tion in perfect agreement with the exact three-dimensional s
tion. On the contrary, the RM1 model gives different solutio
depending on the number of layers considered for the fictiti
staking sequence. In particular, forn510 the shear stress is a
most constant in the core of the plate. In fact, increasing the n
ber of layers, i.e., increasing the number of independent funct
approximating the shear stresses, the constitutive Eq.~9! tends to
be enforced. Thus, enlarging the space of the shear param
to
2,..,to

n ,t1,..,tn the shear stress profile tends to become cons
for the homogeneous plate.

Table 1 Dimensionless maximum displacement w max defined
by formula „52… for homogeneous plate and for †0Õ90‡ and †0Õ90Õ
0‡ composite laminates in cylindrical bending

wmax Homogeneous @0/90# @0/90/0#

FSDTx0 0.7347060 2.9662221 0.8136198
FSDTxW 0.7347060 2.9713422 0.9443031
RM1 0.7347060 2.9482925 0.7902380
RM2 0.7347060 2.9722354 0.9443031
RM3 0.7347060 2.9722354 0.9443031
RM4 0.7347033 2.9721543 0.9443031
3D–AS 0.7316710 2.9502480 0.9306170
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In Figs. 3 and 4 the dimensionless shear stressest1z /p0 are
plotted for the@0/90# and@0/90/0# laminates, respectively. Again i
can be noted the good agreement between the solutions obt
using the RM2, RM3, and RM4 models and the three-dimensio
analytical solution. On the contrary, the RM1 model, based on
assumption of independent approximation of the shear stres
leads to unsatisfactory solution, since the profile appears a
lutely inadequate.

6.2 Simply Supported Laminates

Cross-Ply Laminates. Cross-ply laminates subjected to th
sinusoidal loadp5p0 sin(ax)sin(ay) with a5p/a, are consid-
ered. The following SS1 boundary conditions are adopted:

u25w5w250 N115M1150 at x150 and x15a

u15w5w150 N225M2250 at x250 and x25a.

Results are computed for homogeneous plate and for@0/90# and
@0/90/0# laminates.

Fig. 1 Dimensionless shear stress t1z Õp 0 at x 1Ä0 for homo-
geneous plate in cylindrical bending; comparison between the
different solutions

Fig. 2 Dimensionless shear stress t1z Õp 0 at x 1Ä0 for homo-
geneous plate in cylindrical bending; comparison between the
different solutions computed considering one, three, and ten
equal layers
Journal of Applied Mechanics
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In Table 2 the dimensionless maximum displacementwmax de-
fined by formula~52! is reported; in particular, results are ob
tained, considering

• the classical FSDT analytical solution withx5x055/6,
• the finite element solution (FEMx0) with x5x0 ,

Fig. 3 Dimensionless shear stress t1z Õp 0 at x 1Ä0 for the
†0Õ90‡ laminate in cylindrical bending; comparison between the
different solutions

Fig. 4 Dimensionless shear stress t1z Õp 0 at x 1Ä0 for the
†0Õ90‡ laminate in cylindrical bending; comparison between the
different solutions

Table 2 Dimensionless maximum displacement w max defined
by formula „52… for homogeneous plate and for †0Õ90‡ and †0Õ90Õ
0‡ cross-ply laminates

wmax Homogeneous @0/90# @0/90/0#

FSDTx0 0.6382997 1.237270 0.669302
FEMx0 0.63834 1.2373 0.66930
FEMx 0.63834 1.2319 0.76377
RM1 0.6382997 - -
RM2 0.6382997 1.231817 0.763779
RM3 0.6382997 1.231817 0.763779
RM4 0.6382997 1.231817 0.763779
3D 0.6338085 1.224799 0.751425
MAY 2003, Vol. 70 Õ 387
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• the finite element solution~FEMx! with exact value of the
shear correction factor computed by the iterative proced
proposed in@13#,

• the RM1 analytical solution only for the homogeneous pla
• the RM2, RM3, and RM4 analytical solutions, and
• the exact three-dimensional solution 3D-AS.

In Figs. 5 and 6 the dimensionless shear stress profilest1z /p0
and t2z /p0 for the @0/90# laminate are plotted, respectivel
Analogously, in Figs. 7 and 8 the shear stress profiles are plo
for the@0/90/0# laminate. It can be noted that the proposed mod
are able to approximate very accurately the exact thr
dimensional solution for both the considered laminations.

Finally, in Fig. 9 the dimensionless displacementwmax defined
by formula ~52!, computed for the@0/90/0# lamination, is plotted
versus the ratior5h/a. In particular, the RM3 solution is com
pared with three dimensions with the FSDTx0 , with the FSDTx
and with the classical laminate theory~CLT! solutions. It can be
emphasized the good accordance between the RM3 and the
lytical three-dimensional solutions for a wide range of the ratior.

Fig. 5 Dimensionless shear stress t1z Õp 0 for the †0Õ90‡ lami-
nate computed at x 1Ä0, x 2ÄaÕ2; comparison with the three-
dimensional analytical solution

Fig. 6 Dimensionless shear stress t2z Õp 0 for the †0Õ90‡ lami-
nate computed at x 1ÄaÕ2, x 2Ä0; comparison with the three-
dimensional analytical solution
388 Õ Vol. 70, MAY 2003
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Angle-Ply Laminate. The antisymmetric@245/45# angle-ply
laminate subjected to the sinusoidal loadp5p0 sin(ax)sin(ay)
with a5p/a, is considered. The following SS2 boundary cond
tions are adopted:

u15w5w250 N125M1150 at x150 and x15a

u25w5w150 N125M2250 at x250 and x25a.

In Table 3 the dimensionless maximum displacementwmax de-
fined by formula~52! is reported; in particular, results are ob
tained, considering

• the classical FSDT analytical solution withx5x0 and
• the RM2, RM3, and RM4 analytical solutions.

It can be noted that the RM2, RM3, and RM4 models give
the same results which differ from the FSDT solution obtain
adopting the shear correction factorx55/6. Finally, in Fig. 10 the
shear stress profilet1z /p0 for the angle-ply laminate is plotted.

Fig. 7 Dimensionless shear stress t1z Õp 0 for the †0Õ90Õ0‡ lami-
nate computed at x 1Ä0, x 2ÄaÕ2; comparison with the three-
dimensional analytical solution

Fig. 8 Dimensionless shear stress t2z Õp 0 for the †0Õ90Õ0‡ lami-
nate computed at x 1ÄaÕ2, x 2Ä0; comparison with the three-
dimensional analytical solution
Transactions of the ASME
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7 Conclusions
Refined laminate models are presented. They are derived

sidering mixed variational formulations of the laminate proble
introducing suitable representation forms of the shear stresse
the plate thickness. It is obtained that independent approximat
of the shear stresses can lead to unsatisfactory models, whic
not able to recover the correct profiles of the stresses.

The proposed RM2, RM3, and RM4 models, obtained rep
senting the transverse shear stress profile by using the th
dimensional equations, are very satisfactory; in fact, the solut
obtained by these models are in very good accordance with
three-dimensional analytical solution.

The RM2 approach appears the more suitable in view to
velop effective laminate finite elements. In fact, the RM3 mo

Fig. 9 Dimensionless displacement w max versus the thickness
to side ratio

Table 3 Dimensionless maximum displacement w max defined
by formula „52… for the †À45Õ45‡ angle-ply composite laminate

Model FSDTx0 RM2 RM3 RM4

wmax 0.8828107 0.8929168 0.8929168 0.8929168

Fig. 10 Dimensionless shear stress t1z Õp 0 for the †À45Õ45‡
laminate computed at x 1Ä0, x 2ÄaÕ2; comparison with first-
order shear deformation theory „xÄ5Õ6… analytical solution
Journal of Applied Mechanics
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needs the use of a penalty parameter, which is not always sim
to set; on the other hand, the RM4 requires the use of smoo
approximation functions in the finite element formulation, sin
second-order derivatives appear in the governing functional.

The proposed model does not suffer of any limitation about
number of layers defining the stacking sequence and of the
angles; more complex situations can be investigated, includ
quasi-isotropic laminates. More complex cases can be studied
veloping suitable finite elements based on the proposed form
tions. In fact, the presented mixed principles, in particular
RM2 model, are the bases for the development of new and
forming finite elements. One of the major problems in develop
mixed laminate finite elements, is the definition of the approxim
tion functions used for the midplane strains and curvatures
order to verify the stability requirement, related to the LBB co
dition. Finally, full displacement finite elements can be recove
from the refined model RM2 performing static condensation
strain and stress variables.
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Analysis of Laminated Anisotropic
Cylindrical Shell by Chebyshev
Collocation Method
The governing equations of a laminated anisotropic cylindrical shell problem are a sy
of partial differential equations. The boundary conditions will complicate the probl
Thus, it is hard to handle the governing equations in the form of functions of indepen
variables. Herein, Chebyshev collocation method is proposed to achieve the exact so
theoretically of such a difficult problem. Finally, two examples with numerical results
presented. The preciseness and efficiency of the proposed Chebyshev collocation
for laminated anisotropic shell problem are highlighted.@DOI: 10.1115/1.1574059#
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Introduction
Shells have been widely applied to many engineering struct

elements, e.g., pressure vessels, submarine hulls, ship hulls
fuselages of airplanes, etc. From the survey of literature, plent
research is published in the field of shell problems. However
for the work in this paper, the specified references on thin sh
are merely pointed out. Kraus@1# derived the governing equation
of isotropic thin shell problems. Ambartsumyan@2# developed the
theory and dealt with the problems about some anisotropic s
problems. Flu¨gge@3# presented the solutions for laminated anis
tropic shells. He assumed the solutions as doubly infinite trigo
metric series which must satisfy the boundary conditions. Th
substituting the solutions back to the governing equations,
unknown coefficients could be resolved. The solutions obtai
by the method proposed by Flu¨gge are functions of two indepen
dent variables which are much more applicable than any o
methods. In spite of the abovementioned advantages, the me
will be blocked in the cases of the complicated material proper
and boundary conditions. Chaudhuri@4# proposed a method to
generate the exact solutions for arbitrarily laminated anisotro
cylindrical shell. Nevertheless, the method proposed
Chaudhuri was limited to the field of tube, and it did not work f
the part of cylindrical shell. All the theories mentioned above
based on Kirchhoff-Love’s@5# hypotheses. To overcome the di
advantages as discussed in the literature, Chebyshev colloc
methods,@6–8#, associated with boundary conditions are used
achieve a more general form of the laminated anisotropic cy
drical shell problem.

Chebyshev Polynominals
The Chebyhsev polynominal is named after the Russian m

ematician P. F. Chebyshev~1821-1994!. Chebyshev polynomials
are known as a kind of orthogonal polynomials that can be app
to numerical analysis. For solving systems of partial differen
equations in this paper, some basic formulas are listed as follo

The nth-order Chebyshev polynomial,@9#, is expressed as

Tn~x!5cos~nu!, x5cos~u!, 21<x<1, (1)

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 7, 2000; final revision, June 5, 2001. Associate Editor: M. Ortiz. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
Copyright © 2Journal of Applied Mechanics
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wheren is a non-negative integer. By the trigonometric relatio
there exists

cos~~n11!u!1cos~~n21!u!52 cos~nu!, (2)

and the recurrence equations can be generated as

Tn11~x!52xTn~x!2Tn21~x!, T0~x!51, T1~x!5x. (3)

From Eq.~3! the first few Chebyshev polynomials are represen
as

T2~x!52x221

T3~x!54x323x

T4~x!58x428x211

T5~x!516x5220x315x (4)

. . . . . . . . .

Tn~x!5
1

2 H ~2x!n2F2S n21
1 D2S n22

1 D G~2x!n22

1F2S n22
2 D2S n23

2 D G~2x!n242¯J , n>1,

where S n21
1 D5

~n21!!

~n2121!!1!
,

S n22
1 D5

~n22!!

~n2221!!1!
, S n22

2 D5
~n22!!

~n2222!!2!
, etc.

Alternatively,xn can be expressed in Chebyshev polynomials

xn5
1

2n21 FTn~x!1S n
1DTn22~x!1S n

2DTn24~x!1¯ G . (5)

Thus, the expansion forxmTn(x) is

xmTn~x!5
1

2m (
i 50

m S m
i DTn2m12i~x!. (6)

Using the weighting function (12x2)21/2, the orthogonality con-
dition of Chebyshev polynomials can be presented as

E
21

1

~12x2!2 1/2Tm~x!Tn~x!dx55
0, mÞn

p

2
, m5nÞ0

p, m5n50

. (7)

Now, f (x) defined by the Chebyshev series for21<x<1 is
given by

-
on
art-

nta
after
003 by ASME MAY 2003, Vol. 70 Õ 391
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f ~x!5
1

2
a0T0~x!1(

n51

`

anTn~x!, (8)

where

an5
2

p E
21

1

~12x!2 1/2f ~x!Tn~x!dx. (9)

In the appreciation of Chebyshev polynomials in the most en
neering problems, any rangea<y<b can be transformed into th
Chebyshev polynomials’ range21<x<1. The independent vari
ablex in Eqs.~1!–~9! can be replaced by

x5
2

b2a
y1

2b2a

b2a
. (10)

Formulation for Laminated Anisotropic Cylindrical
Shell

The strain-displacement relations and equilibrium equation
shell problems can be obtained by the method cited in Ref.@1#.
Please refer to@1# for further details of implementation. For sim
plicity, only the final results are listed.

First of all, the position vector equation of the paramet
curves of surface can be represented as

r ~a1 ,a2!5 f 1~a1 ,a2!i1 f 2~a1 ,a2!j1 f 3~a1 ,a2!k, (11)

where f 1 , f 2 , and f 3 are continuous and single-valued functio
of two variable parametersa1 and a2 . The position vectors of
curvilinear coordinates are represented in Fig. 1. The differen
changedr in the vectorr is

dr5r ,1da11r ,2da2 , (12)

wherer ,i5]r /]a i , i 51, 2. Taking the scalar product ofdr¢ with
itself gives the square of magnitude of the differential changedr
as

~ds!25dr•dr5 Ĕ ~da1!212F̆ da1da21 Ğ ~da2!2, (13)

where

Ĕ 5r ,1•r ,1 ,

F̆ 5r ,1•r ,2 , (14)

Ğ 5r ,2•r ,2 .

In Eqn. ~13!, Ĕ , F̆, andĞ are called the first fundamental mag
nitudes. If the parametric curves form an orthogonal net, thenF̆
50 and Eq.~13! becomes

~ds!25A1
2~da1!21A2

2~da2!2, (15)

Fig. 1 Position vectors of a surface
392 Õ Vol. 70, MAY 2003
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whereA1 andA2 are Lame´ parameters and expressed as

A15AĔ,

A25AĞ. (16)

The unit normal vector is given as

n~a1 ,a2!5
r ,13r ,2

ur ,13r ,2u
. (17)

And, the normal curvature is

Kn5
dr•dn

dr•dr
. (18)

Similarly, the differential change vectordn can be expressed as

dn5n,1da11n,2da2 . (19)

Substitute Eqs.~12! and~19! into Eq.~18!, it generates the norma
curvature

Kn5
L̆ ~da1!212M̆ ~da1da2!1 N̆ ~da2!2

Ĕ ~da1!212F̆ ~da1da2!1 Ğ ~da2!2
, (20)

where

L̆ 5r ,1•n,1 ,

2M̆ 5~r ,1•n,21r ,2•n,1!, (21)

N̆ 5r ,2•n,2 .

In Eq. ~21!, L, M , and N are called the second fundamen
magnitudes.

If da250 andda150, Eq. ~20! becomes

K15
1

R1

5
L̆

Ĕ
,

(22)

K25
1

R2

5
N̆

Ğ
,

where R1 and R2 are the radii in the directions ofa1 and a2 ,
respectively.

According to Kirchhoff-Love’s first approximation to the theor
of thin elastic shells,@1#, there are four postulates as follows:~a!
the shell is thin,~b! the deflections of the shell are small,~c! the
transverse normal stress is negligible, and~d! normals to the ref-
erence surface of the shell remain normal to it and undergo
change in length during deformation. Therefore, the stra
displacement relations in a thin elastic shell,@1#, are given by

«15«1
01zk1 ,

«25«2
01zk2 , (23)

g125g12
0 1zk12,

where

«1
05

1

A1

]u1

]a1
1

u2

A1A2

]A1

]a2
1

w

R1
,

«2
05

1

A2

]u2

]a2
1

u1

A1A2

]A2

]a1
1

w

R2
,

g12
0 5

A2

A1

]

]a1
S u2

A2
D1

A1

A2

]

]a2
S u1

A1
D , (24)

k15
1

A1

]b1

]a1
1

b2

A1A2

]A1

]a2
,

k25
1

A2

]b2

]a2
1

b1

A1A2

]A2

]a1
,

k125
A2

A1

]

]a1
S b2

A2
D1

A1

A2

]

]a2
S b1

A1
D .
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The quantities ofb1 andb2 in Eq. ~24! are the rotations tangentia
to the reference surface oriented along the parametric linesa1 and
a2 . They are

b15
u1

R1
2

1

A1

]w

]a1
,

(25)

b25
u2

R2
2

1

A2

]w

]a2
.

The following equilibrium equations are derived by Hamilton
principle, @1#, some terms in the equations are omitted for t
consideration in static case.

]~N1A2!

]a1
1

]~N21A1!

]a2
1N12

]A1

]a2
2N2

]A2

]a1
1A1A2

Q1

R1
50,

]~N12A2!

]a1
1

]~N1A1!

]a2
1N21

]A2

]a1
2N1

]A1

]a2
1A1A2

Q2

R2
50,

]~Q1A2!

]a1
1

]~Q2A1!

]a2
2S N1

R1
1

N2

R2
DA1A22qnA1A250, (26)

]~M1A2!

]a1
1

]~M21A1!

]a2
1M12

]A1

]a2
2M2

]A2

]a1
2Q1A1A250,

]~M12A2!

]a1
1

]~M2A1!

]a2
1M21

]A2

]a1
2M1

]A1

]a2
2Q2A1A250.

In Eq. ~26! the positive directions ofN1 , N2 , N12, N21, Q1 , and
Q2 are defined as shown in Fig. 2. Meanwhile, the positive dir
tions of M1 , M2 , M12 and M21 are defined in Fig. 3. Due to
symmetry of stress tensor, i.e.,t125t21, and the characteristics o
‘‘thin’’ shell, N125N21 andM125M21 are provided in Eq.~26!.

Fig. 2 Nomenclature for stress resultants and shear stress
resultants

Fig. 3 Nomenclature for moment resultants
Journal of Applied Mechanics
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The natural boundary conditions are as follows.
Along the edge of constanta1 :

N15N̄1 , or u15ū1 ,

T125T̄12, or u25ū2 ,
(27a)

V15V̄1 , or w5w̄,

M15M̄1 , or b15b̄1 .

Along the edge of constanta2 :

N25N̄2 , or u25ū2 ,

T215T̄21, or u15ū1 ,
(27b)

V25V̄2 , or w5w̄,

M25M̄2 , or b25b̄2 ,

where

Tnt5Nnt1
Mnt

Rt
,

(28)

Vn5Qn1
1

At

]Mnt

]a t
, n, t51, 2.

The symbolsn andt denote normal and tangential directions on
designated boundary edge.

Now let the position vector of a cylindrical shell problem be

r ~a1 ,a2!5a1i1R sin~a2!j1R cos~a2!k, (29)

where the definitions ofa1 , a2 , andR are represented in Fig. 4
Substituting Eq.~29! into Eqs.~14!–~22! and manipulating the

results provides

A151, A25R, R15`, R25R. (30)

Substituting Eq.~30! into Eqs.~25! and ~24! to yield

b152w,1 , b25
u2

R
2

1

R
w,2 , (31)

and

«1
05u1,1, «2

05
1

R
u2,21

w

R
, g12

0 5u2,11
1

R
u1,2,

(32)

k152w,11, k25
1

R2 u2,22
1

R2 w,22, k125
1

R
u2,12

2

R
w,12.

Fig. 4 Contour of the cylindrical shell
MAY 2003, Vol. 70 Õ 393
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Again, substituting Eq.~30! into the last two equations of Eq
~26!, and after rearrangement, we have

Q15M1,11
1

R
M12,2,

(33)

Q25M12,11
1

R
M2,2.

The substitution of Eqs.~30!, ~33! into the first three equations o
Eq. ~26! yields the simplified equilibrium equations

N1,11
1

R
N12,250,

N12,11
1

R
N2,21

1

R S M12,11
1

R
M2,2D50, (34)

M1,111
2

R
M12,121

1

R2 M2,222
N2

R
5qn .

Finally, substituting Eqs.~30!, ~33! into Eq. ~28! gives

T125N12, T215N21, (35)

V15M1,11
2

R
M12,2, V15M2,21

2

R
M12,1.

The stress-strain relations for thekth layer @10,11# in a lami-
nated anisotropic cylindrical shell are expressed as

H s1

s2

t12

J
k

5F Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

G
k

H H «1
0

«2
0

g12
0
J 1zH k1

k2

k12

J J , (36)

where

Q̄115Q11 cos4 u12~Q1212Q66!sin2 u cos2 u1Q22 sin4 u,

Q̄125~Q111Q2224Q66!sin2 u cos2 u1Q12~sin4 u1cos4 u!,

Q̄225Q11 sin4 u12~Q1212Q66!sin2 u cos2 u1Q22 cos4 u,
(37)

Q̄165~Q112Q1222Q66!sinu cos3 u

1~Q122Q2212Q66!sin3 u cosu,

Q̄265~Q112Q1222Q66!sin3 u cosu

1~Q122Q2212Q66!sinu cos3 u,

Q̄665~Q111Q2222Q1222Q66!sin2 u cos2 u

1Q66~sin4 u1cos4 u!.

In Eq. ~37!, u is the angle of ply orientation~the more precise
definition aboutu is described in Ref.@10#! and

Q115
E1

12n12n21
,

Q125Q215
n12E1

12n12n21
5

n21E2

12n12n21
,

(38)

Q225
E2

12n12n21
,

Q665G12.

The stress and moment resultants are defined as

H N1

N2

N12

J 5(
k51

N E
zk21

zk H s1

s2

t12

J
k

dz (39)
394 Õ Vol. 70, MAY 2003
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and

H M1

M2

M12

J 5(
k51

N E
zk21

zk H s1

s2

t12

J
k

zdz (40)

wherezk andzk21 are described in Fig. 5.
Substituting Eq.~36! into Eqs.~39! and ~40!, respectively, and

rearranging the results, the stress and moment resultants ca
expressed as

5
N1

N2

N12

M1

M2

M12

6 53
A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

4 5
«1

0

«2
0

g12
0

k1

k2

k12

6 ,

(41)

where

Ai j 5(
k51

N

~Q̄i j !k~zk2zk21!,

Bi j 5
1

2 (
k51

N

~Q̄i j !k~zk
22zk21

2 !, (42)

Di j 5
1

3 (
k51

N

~Q̄i j !k~zk
32zk21

3 !,

i , j 51, 2, 6.

Finally, substituting Eq.~32! into Eq. ~41!, it generates six equa-
tions. For convenience, the results are abbreviated as

N15A11u1,11A12S 1

R
u2,21

w

RD1¯1B16S 1

R
u2,12

2

R
w,12D ,

N25A12u1,11A22S 1

R
u2,21

w

RD1¯1B26S 1

R
u2,12

2

R
w,12D ,

N125A16u1,11A26S 1

R
u2,21

w

RD1¯1B66S 1

R
u2,12

2

R
w,12D ,

(43)

M15B11u1,11B12S 1

R
u2,21

w

RD1¯1D16S 1

R
u2,12

2

R
w,12D ,

Fig. 5 Geometry of multilayered laminate
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M25B12u1,11B22S 1

R
u2,21

w

RD1¯1D26S 1

R
u2,12

2

R
w,12D ,

M125B16u1,11B26S 1

R
u2,21

w

RD1¯1D66S 1

R
u2,12

2

R
w,12D .

Moreover, the substitution of Eq.~43! into Eq. ~34! yields

~A11u1,111¯ !1
1

R
~A16u1,121¯ !50,

~A16u1,111¯ !1
1

R
~A12u1,121¯ !

1
1

R F ~B16u1,111¯ !1
1

R
~B12u1,121¯ !G50, (44)

~B11u1,1111¯ !1
2

R
~B16u1,1121¯ !

1
1

R2 ~B12u1,1221¯ !2
1

R
~A12u1,11¯ !5qn .

To solve the system of partial differential equations of Eq.~44!,
the Chebyshev collocation method is used as discussed in the
section.

Chebyshev Collocation Method
Consider a rectangular plate with the dimensions@X1 ,X2#

3@Y1 ,Y2# and it implies thatX1<a1<X2 and Y1<a2<Y2 .
First of all, separate the equilibrium Eqs.~44! and boundary con-
ditions ~27a!, ~27b! into three groups as follows:

Group 1: Eq.~44.1! and

N15N̄1 , or u15ū1 , ~on the edge of constanta1! (45a)

T215T̄21, or u15ū1 , ~on the edge of constanta2!.
(45b)

Group 2: Eq.~44.2! and

T125T̄12, or u25ū2 , ~on the edge of constanta1!
(46a)

N25N̄2 , or u25ū2 , ~on the edge of constanta2!.
(46b)

Group 3: Eq.~44.3! and

V15V̄1 , or w5w̄,

M15M̄1 , or b15b̄1
~on the edge of constanta1!,

(47a)

V25V̄2 , or w5w̄,

M25M̄2 , or b25b̄2
~on the edge of constanta2!.

(47b)

Let the solutions to the system of partial differential equations

u1~a1 ,a2!5 (
m50

M

(
n50

N

amnT̂m~a1!T̃n~a2!,

u2~a1 ,a2!5 (
m50

M

(
n50

N

bmnT̂m~a1!T̃n~a2!, (48)

w~a1 ,a2!5 (
m50

M

(
n50

N

cmnT̂m~a1!T̃n~a2!,

where
Journal of Applied Mechanics
next

be

T̂m~a1!5TmS 1

X22X1
~2a12X22X1! D ,

(49)

T̃n~a2!5TnS 1

Y22Y1
~2a22Y22Y1! D .

Equation~49! can be derived by linear transformation in order
satisfy that the variables in Chebyshev polynomials within
interval @21,1#.

Let the Chebyshev-extrema points,@12#, ~i.e., also named
Gauss-Lobatto points! be

â i5
X21X1

2
2

X22X1

2
cosS p i

M D , i 50, 1,̄ , M ,
(50)

ã j5
Y21Y1

2
2

Y22Y1

2
cosS p j

N D , j 50, 1,̄ , N.

For example, if a plate is subjected to the transverse loadqn
with four edges simply supported, the boundary conditions ar

Group 1: Hu150.~a15const.!
u150.~a25const.! (51a)

Group 2: Hu250.~a15const.!
u250.~a25const.! (51b)

Group 3: Hw50, M150.~a15const.!
w50, M250.~a25const.!. (51c)

By the collocation method,@13#, the substitution of Eq.~48!
into Eq. ~44! and Eqs.~51a,b,c! yields

Group 1: (
m50

M

(
n50

N

$amn@A11T̂m
(2)~ â i !T̃n~ ã j !1¯#

1bmn@A12T̂m
(1)~ â i !T̃n

(1)~ ã j !1¯#

1¯22cmn@B16T̂m
(2)~ â i !T̃n

(1)~ ã j !1¯#%50,
(52a)

i 51,2,̄ ,M21, j 51,2,̄ ,N21

u1~X1 ,ã j !5 (
m50

M

(
n50

N

amnT̂m~X1!T̃n~ ã j !50, j 50,1,̄ ,N

(52b)

u1~X2 ,ã j !5 (
m50

M

(
n50

N

amnT̂m~X2!T̃n~ ã j !50, j 50,1,̄ ,N

(52c)

u1~ â i ,Y1!5 (
m50

M

(
n50

N

amnT̂m~ â i !T̃n~Y1!50, i 51,̄ ,M21

(52d)

u1~ â i ,Y2!5 (
m50

M

(
n50

N

amnT̂m~ â i !T̃n~Y2!50, i 51,̄ ,M21

(52e)

Group 2: (
m50

M

(
n50

N

$amn@A16T̂m
(2)~ â i !T̃n~ ã j !1¯#

1bmn@A26T̂m
(1)~ â i !T̃n

(1)~ ã j !1¯#

1¯22cmn@B66T̂m
(2)~ â i !T̃n

(1)~ ã j !1¯#%50,

i 51,2,̄ ,M21, j 51,2,̄ ,N21 (53a)
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u2~X1 ,ã j !5 (
m50

M

(
n50

N

bmnT̂m~X1!T̃n~ ã j !50, j 50,1,̄ ,N

(53b)

u2~X2 ,ã j !5 (
m50

M

(
n50

N

bmnT̂m~X2!T̃n~ ã j !50, j 50,1,̄ ,N

(53c)

u2~ â i ,Y1!5 (
m50

M

(
n50

N

bmnT̂m~ â i !T̃n~Y1!50, i 51,̄ ,M21

(53d)

u2~ â i ,Y2!5 (
m50

M

(
n50

N

bmnT̂m~ â i !T̃n~Y2!50, i 51,̄ ,M21

(53e)

Group 3: (
m50

M

(
n50

N

$amn@B11T̂m
(3)~ â i !T̃n~ ã j !1¯#

1bmn@B12T̂m
(2)~ â i !T̃n

(1)~ ã j !1¯#

1¯22cmn@D16T̂m
(3)~ â i !T̃n

(1)~ ã j !1¯#%5qn ,

i 52,3,̄ ,M22, j 52,3,̄ ,N22 (54a)

w~X1 ,ã j !5 (
m50

M

(
n50

N

cmnT̂m~X1!T̃n~ ã j !50, j 50,1,̄ ,N

(54b)

w~X2 ,ã j !5 (
m50

M

(
n50

N

cmnT̂m~X2!T̃n~ ã j !50, j 50,1,̄ ,N

(54c)

w~ â i ,Y1!5 (
m50

M

(
n50

N

cmnT̂m~ â i !T̃n~Y1!50, i 51,̄ ,M21

(54d)

u1~ â i ,Y2!5 (
m50

M

(
n50

N

cmnT̂m~ â i !T̃n~Y2!50, i 51,̄ ,M21

(54e)

M1~X1 ,ã j !5 (
m50

M

(
n50

N

$amn@B11T̂m
(1)~X1!T̃n~ ã j !1¯#

1bmn@B12T̂m~X1!T̃n
(1)~ ã j !1¯#

1¯22cmn@D16T̂m
(1)~X1!T̃n

(1)~ ã j !1¯#%50,

j 51,2,̄ ,N21 (54f)

M1~X2 ,ã j !5 (
m50

M

(
n50

N

$amn@B11T̂m
(1)~X2!T̃n~ ã j !1¯#

1bmn@B12T̂m~X2!T̃n
(1)~ ã j !1¯#

1¯22cmn@D16T̂m
(1)~X2!T̃n

(1)~ ã j !1¯#%50,

j 51,2,̄ ,N21 (54g)
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M2~ â i ,Y1!5 (
m50

M

(
n50

N

$amn@B12T̂m
(1)~ â i !T̃n~Y1!1¯#

1bmn@B22T̂m~ â i !T̃n
(1)~Y1!1¯#

1¯2 2cmn@D26T̂m
(1)~ â i !T̃n

(1)~Y1!1¯#%50,

i 52,3̄ ,N22 (54h)

M2~ â i ,Y2!5 (
m50

M

(
n50

N

$amn@B12T̂m
(1)~ â i !T̃m~Y2!1¯#

1bmn@B22T̂m~ â i !T̃n
(1)~Y2!1¯#

1¯2 2cmn@D26T̂m
(1)~ â i !T̃n

(1)~Y2!1¯#%50,

i 52,3̄ ,N22. (54i)

Both of the numbers of the total equations in three groups and
the unknown constants (amn , bmn , cmn) are 3(M11)(N11).
Through this, the unique solution of the unknown constants (amn ,
bmn , cmn) can be received. Other problems with any differe
boundary conditions can be solved similarly via the method m
tioned above.

Examples
Case 1:
Consider a four-layered cross-ply laminated clamped compo

cylindrical shell which is subjected to a uniformly distributed loa
qn51000 Pa. The contour of the cylindrical shell is represented
Fig. 4.

Material: graphite/epoxy T300/5208.
Mechanical properties of a lamina with unidirectional fibers:

E15181 GPa, E2510.3 GPa,

G1257.17 GPa, n1250.28. (55)

Thickness of each layer: 0.125 mm.
Stacking sequence: @0/90/90/0#.
Dimension: @0,4#m3@0,p/6#radian, i.e., 0<a1<4 and 0<a2

< p/6 .
Radius of the cylindrical shell: R55 m.
For clamped edges, the boundary conditions are as follows
For a150 anda154:

u15u25w5b150. (56)

For a250 anda25p/6 :

u25u15w5b250. (57)

Solution procedure:

1. By Eq.~42!, Ai j , Bi j , andDi j ( i , j 51, 2, 6! can be calcu-
lated, and then substitute the results into Eq.~44!.

2. Substitute Eq.~48! into Eq. ~44! with boundary conditions
~56! and ~57!.

3. Separate these equations into three groups as previousl
scribed.

4. After the manipulation by Chebyshev collocation method
mentioned above, the unknown constantsamn , bmn , and
cmn in Eq. ~48! can be obtained.

5. Substituteamn , bmn , andcmn into Eq. ~48! to receiveu1 ,
u2 , andw.

6. Substituteu1 , u2 , andw into Eq. ~43! to obtain the stress
and moment resultants.

For M5N512 in Eq. ~48!, all the results ofu1 , u2 , w,
N1 , N2 , N12, M1 , M2 , and M12 are depicted in Figs. 6–14
respectively.
Transactions of the ASME



Fig. 6 Displacement of u 1 in Case 1

Fig. 7 Displacement of u 2 in Case 1

Fig. 8 Displacement of w in Case 1

Fig. 9 Stress resultant N1 in Case 1
Journal of Applied Mechanics
Fig. 10 Stress resultant N2 in Case 1

Fig. 11 Stress resultant N12 in Case 1

Fig. 12 Moment resultant M1 in Case 1

Fig. 13 Moment resultant M2 in Case 1
MAY 2003, Vol. 70 Õ 397
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The numerical results ofu1 , u2 , w, N1 , andN2 are listed in
Tables 1–5 for reference. At the same time, the results by fi
element method incorporated with NASTRAN software are de
onstrated to validate the correctness of the method of Chebys
polynomials. A 32316 ~32 for a1-direction, 16 fora2-direction!
mesh is adopted for the finite element method in this case. H
ever, the results ofN12, M1 , M2 , and M12 are approaching to
zero in the interior region of the cylindrical shell. Although som
maximal values occur near the corners or edges of the cylindr
shell, they are omitted herein.

Fig. 14 Moment resultant M12 in Case 1
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The results (M and N in Eq. ~48! are greater than 12! are
extremely close to those in column~C–12–12!. Thus the only
results in columns~C–8–8!, ~C–10–10!, and~C–12–12! are pre-
sented in this case.

Let Da2 be the range ofa2 . ProvidedRDa25constant, the
magnitude ofR must be decreased by increasing the magnitude
Da2 . This causes the displacementw decreasing when the radiu
R is decreased. For convenience, the middle point of the s
is specified as the sample location in each interval ofa2 , and
takea25p/12 for each interval. The phenomenon of the cent
point displacementw versus the change of curvature is plotted
Fig. 15.

Case 2:
Consider a four-layered cross-ply laminated composite cylin

cal shell which is subjected to a uniformly distributed loadqn
51000 Pa. The cylindrical shell is clamped on the edgesa1
50,a154 and simply supported on the edgesa250,a25p/6 .

The mechanical properties, thickness of each layer, and the
mensions are the same as those in Case 1.

For clamped edges, the boundary conditions are as follows
For a150,4:

u15u2w5b150. (58)

For simply supported edges, the boundary conditions are
follows:

For a250,p/6 :

u15u25V25M250. (59)
Table 1 The displacement of u 1 in Case 1

Tc(** )

u1
~unit: m!

Po(* ) C–8–8~I! C–10–10~II ! C–12–12~III ! Na~IV !

~1, p/48! 3.71799E-7 (2901) 1.71899E-7 (2470) 24.94760E-8 (6.56) 24.64279E-8
~1, 2p/48! 4.12555E-8 (2119) 1.63615E-7 (2177) 22.23942E-7 (4.78) 22.13726E-7
~1, 3p/48! 4.70309E-7~168! 3.48953E-7~98! 1.88485E-7~7.21! 1.75810E-7
~1, 4p/48! 8.29816E-7~2105! 4.11935E-7~995! 3.91099E-8~3.96! 3.76202E-8
~1, 5p/48! 4.70309E-7~168! 3.48953E-7~98! 1.88485E-7~7.21! 1.75810E-7
~1, 6p/48! 4.12555E-8 (2119) 1.63615E-7 (2177) 22.23942E-7 (4.78) 22.13726E-7
~1, 7p/48! 3.71799E-7 (2901) 1.71899E-7 (2470) 24.94760E-8 (6.56) 24.64279E-8
~2, p/48! 0 0 0 0
~2, 2p/48! 0 0 0 0
~2, 3p/48! 0 0 0 0
~2, 4 p /48! 0 0 0 0
~2, 5p/48! 0 0 0 0
~2, 6p/48! 0 0 0 0
~2, 7p/48! 0 0 0 0
~3, p/48! 23.71799E-7 (2901) 21.71899E-7 (2470) 4.94760E-8~6.56! 4.64279E-8
~3, 2p/48! 24.12555E-8 (2119) 21.63615E-7 (2177) 2.23942E-7~4.78! 2.13726E-7
~3, 3p/48! 24.70309E-7 (168) 23.48953E-7 (98) 21.88485E-7 (7.21) 21.75810E-7
~3, 4p/48! 28.29816E-7 (2105) 24.11935E-7 (995) 23.91099E-8 (3.96) 23.76202E-8
~3, 5p/48! 24.70309E-7 (168) 23.48953E-7 (98) 21.88485E-7 (7.21) 21.75810E-7
~3, 6p/48! 24.12555E-8 (2119) 21.63615E-7 (2177) 2.23942E-7~4.78! 2.13726E-7
~3, 7p/48! 23.71799E-7 (2901) 21.71899E-7 (2470) 4.94760E-8~6.56! 4.64279E-8

Notes: Po(* ): position (a1 ,a2).
Tc(** ): type of collocation points.
~I!: Chebyshev collocation method (M5N58 in Eq. ~48!!. The values in the parentheses of the C–8–8 column indicate the
errors compared with the results of NASTRAN. The errors are calculated by the formula~C–8–8!2Na/Na3100%.
~II !: Chebyshev collocation method (M5N510 in Eq. ~48!!. The errors are calculated by the formula~C–10–10!2Na/Na
3100% and expressed in parentheses.
~III !: Chebyshev collocation method (M5N512 in Eq. ~48!!. The errors are calculated by the formula~C–12–12!2Na/Na
3100% and listed in parentheses.
~IV !: Numerical solutions obtained by the finite element method and NASTRAN software and designated by Na.
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Table 2 The displacement of u 2 in Case 1

Tc(** )

u2
~unit: m!

Po(* ) C–8–8~I! C–10–10~II ! C–12–12~III ! Na~IV !

~1, p/48! 1.99395E-5~136! 9.44063E-6~12! 8.16273E-6 (23.58) 8.46580E-6
~1, 2p/48! 5.25849E-6 (2475) 22.65204E-6 (89) 21.29907E-6 (27.48) 21.40410E-6
~1, 3p/48! 26.98802E-6 (2762) 3.81387E-7 (2256) 22.29287E-7 (26.09) 22.44156E-7
~1, 4p/48! 0 0 0 0
~1, 5p/48! 6.98802E-6~2762! 23.81387E-7 (2256) 2.29287E-7 (26.09) 2.44156E-7
~1, 6p/48! 25.25849E-6 (2475) 2.65204E-6~89! 1.29907E-6 (27.48) 1.40410E-6
~1, 7 p/48! 21.99395E-5 (136) 29.44063E-6 (12) 28.16273E-6 (23.58) 28.46580E-6
~2, p/48! 1.91868E-5~82! 9.96128E-6 (25) 1.00206E-5 (24.71) 1.05160E-5
~2, 2p/48! 4.71305E-6 (2334) 22.49949E-6 (24) 21.86362E-6 (27.65) 22.01800E-6
~2, 3p/48! 27.17021E-6 (1470) 22.45568E-7 (246) 24.29606E-7 (25.92) 24.56640E-7
~2, 4p/48! 0 0 0 0
~2, 5p/48! 7.17021E-6~1470! 2.45568E-7 (246) 4.29606E-7 (25.92) 4.56640E-7
~2, 6 p/48! 24.71305E-6 (2334) 2.49949E-6~24! 1.86362E-6 (27.65) 2.01800E-6
~2, 7p/48! 21.91868E-5 (82) 29.96128E-6 (25) 21.00206E-5 (24.71) 21.05160E-5
~3, p/48! 1.99395E-5~136! 9.44063E-6~12! 8.16273E-6 (23.58) 8.46580E-6
~3, 2p/48! 5.25849E-6 (2475) 22.65204E-6 (89) 21.29907E-6 (27.48) 21.40410E-6
~3, 3p/48! 26.98802E-6 (2762) 3.81387E-7 (2256) 22.29287E-7 (26.09) 22.44156E-7
~3, 4p/48! 0 0 0 0
~3, 5 p/48! 6.98802E-6~2762! 23.81387E-7 (2256) 2.29287E-7 (26.09) 2.44156E-7
~3, 6p/48! 25.25849E-6 (2475) 2.65204E-6~89! 1.29907E-6 (27.48) 1.40410E-6
~3, 7p/48! 21.99395E-5 (136) 29.44063E-6 (12) 28.16273E-6 (23.58) 28.46580E-6
s

n
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The solution procedure is similar to that in Case 1.
For M5N512 in Eq. ~48!, all the results ofu1 , u2 , w, N1 ,

N2 , N12, M1 , M2 , and M12 in the case are depicted in Fig
16–24, respectively. Comparing the results (M5N512 in Eq.
~48!! with those obtained by NASTRAN~the mesh is same as i
ied Mechanics
.

Case 1!, all the errors of the results are very small. For spa
saving, numerical result lists are omitted.

Similarly, as the final description in Case 2, the trend of cen
point deflection versus the change of curvature is plotted in F
25.
Table 3 The displacement of w in Case 1

Tc(** )

w
~unit: m!

Po(* ) C–8–8~I! C–10–10~II ! C–12–12~III ! Na~IV !

~1, p/48! 5.62959E-4 (224) 7.31787E-4 (21.21) 7.34624E-4 (20.83) 7.40790E-4
~1, 2p/48! 8.45028E-4~54! 5.60092E-4~2.18! 5.27200E-4 (23.82) 5.48130E-4
~1, 3p/48! 5.67917E-4~15! 4.55912E-4 (27.53) 4.88377E-4 (20.95) 4.93070E-4
~1, 4p/48! 3.61999E-4 (232) 5.63981E-4~5.81! 5.35111E-4~0.39! 5.33010E-4
~1, 5p/48! 5.67917E-4~15! 4.55912E-4 (27.53) 4.88377E-4 (20.95) 4.93070E-4
~1, 6p/48! 8.45028E-4~54! 5.60092E-4~2.18! 5.27200E-4 (23.82) 5.48130E-4
~1, 7p/48! 5.62959E-4 (224) 7.31787E-4 (21.21) 7.34624E-4 (20.83) 7.40790E-4
~2, p/48! 5.45022E-4 (225) 7.44034E-4~1.82! 7.31242E-4 (20.07) 7.30720E-4
~2, 2p/48! 8.17424E-4~38! 5.67869E-4 (24.01) 5.81378E-4 (21.73) 5.91590E-4
~2, 3p/48! 5.42535E-4~17! 4.57548E-4 (21.53) 4.63682E-4 (20.21) 4.64650E-4
~2, 4p/48! 3.38754E-4 (238) 5.63529E-4~2.78! 5.53511E-4~0.95! 5.48290E-4
~2, 5p/48! 5.42535E-4~17! 4.57548E-4 (21.53) 4.63682E-4 (20.21) 4.64650E-4
~2, 6p/48! 8.17424E-4~38! 5.67869E-4 (24.01) 5.81378E-4 (21.73) 5.91590E-4
~2, 7p/48! 5.45022E-4 (225) 7.44034E-4~1.82! 7.31242E-4 (20.07) 7.30720E-4
~3, p/48! 5.62959E-4 (224) 7.31787E-4 (21.21) 7.34624E-4 (20.83) 7.40790E-4
~3, 2p/48! 8.45028E-4~54! 5.60092E-4~2.18! 5.27200E-4 (23.82) 5.48130E-4
~3, 3p/48! 5.67917E-4~15! 4.55912E-4 (27.53) 4.88377E-4 (20.95) 4.93070E-4
~3, 4p/48! 3.61999E-4 (232) 5.63981E-4~5.81! 5.35111E-4~0.39! 5.33010E-4
~3, 5p/48! 5.67917E-4~15! 4.55912E-4 (27.53) 4.88377E-4 (20.95) 4.93070E-4
~3, 6p/48! 8.45028E-4~54! 5.60092E-4~2.18! 5.27200E-4 (23.82) 5.48130E-4
~3, 7p/48! 5.62959E-4 (224) 7.31787E-4 (21.21) 7.34624E-4 (20.83) 7.40790E-4
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Table 4 The stress resultant of N1 in Case 1

N1 Tc(** )

~unit:
Pa•m)
Po(* ) C–8–8~I! C–10–10~II ! C–12–12~III ! Na~IV !

~1, p/48! 126.780 (213) 143.158 (21.81) 145.375 (20.29) 145.798
~1, 2p/48! 162.593~6.47! 135.476 (211.3) 144.597 (25.32) 152.716
~1, 3p/48! 130.567 (211) 126.974 (213.4) 137.399 (26.34) 146.703
~1, 4p/48! 105.455 (228.4) 133.906 (29.10) 142.990 (22.93) 147.320
~1, 5p/48! 130.567 (211) 126.974 (213.4) 137.399 (26.34) 146.703
~1, 6p/48! 162.593~6.47! 135.476 (211.3) 144.597 (25.32) 152.716
~1, 7p/48! 126.780 (213) 143.158 (21.81) 145.375 (20.29) 145.798
~2, p/48! 141.717 (21.55) 141.235 (21.89) 150.120~4.29! 143.951
~2, 2p/48! 144.233 (215.3) 141.715 (216.7) 160.306 (25.81) 170.209
~2, 3p/48! 132.355 (27.54) 130.859 (28.58) 134.798 (25.83) 143.148
~2, 4p/48! 121.953 (217.5) 125.636 (215.0) 144.721 (22.09) 147.813
~2, 5p/48! 132.355 (27.54) 130.859 (28.58) 134.798 (25.83) 143.148
~2, 6p/48! 144.233 (215.3) 141.715 (216.7) 160.306 (25.81) 170.209
~2, 7p/48! 141.717 (21.55) 141.235 (21.89) 150.120~4.29! 143.951
~3, p/48! 126.780 (213) 143.158 (21.81) 145.375 (20.29) 145.798
~3, 2p/48! 162.593~6.47! 135.476 (211.3) 144.597 (25.32) 152.716
~3, 3p/48! 130.567 (211) 126.974 (213.4) 137.399 (26.34) 146.703
~3, 4p/48! 105.455 (228.4) 133.906 (29.10) 142.990 (22.93) 147.320
~3, 5p/48! 130.567 (211) 126.974 (213.4) 137.399 (26.34) 146.703
~3, 6p/48! 162.593~6.47! 135.476 (211.3) 144.597 (25.32) 152.716
~3, 7p/48! 126.780 (213) 143.158 (21.81) 145.375 (20.29) 145.798
e
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Discussion
Through the features of Chebyshev collocation method

stated, the method can be used to solve the problems of lamin
anisotropic shells with complicated boundary conditions. The
lutions to most problems in this field of laminated anisotrop
shells can be obtained by the proposed method; however, ther
MAY 2003
as
ated
so-
ic
are

two groups of problems which still can not be accomplished. Th
are ~a! the problem of a shell subjected to concentrated loadi
and~b! the problem of thick laminated anisotropic shells. In gro
~a!, it is hard to handle if the position of the concentrated load
is not located at one of the collocation points. However, that m
be overcome by selecting larger values ofM andN, e.g.,M and
Table 5 The stress resultant of N2 in Case 1

N2 Tc(** )

~unit:
Pa•m)
Po(* ) C–8–8~I! C–10–10~II ! C–12–12~III ! Na~IV !

~1, p/48! 5189.97~3.87! 4943.26 (21.06) 4962.83 (20.67) 4996.41
~1, 2p/48! 162.59 (296.7) 135.48 (297.3) 4964.71 (20.70) 4999.89
~1, 3p/48! 5203.38~4.09! 4944.36 (21.10) 4964.21 (20.70) 4999.16
~1, 4p/48! 105.46 (297.9) 133.91 (297.3) 4964.26 (20.70) 4999.18
~1, 5p/48! 5203.38~4.09! 4944.36 (21.10) 4964.21 (20.70) 4999.16
~1, 6p/48! 162.59 (296.7) 135.48 (297.3) 4964.71 (20.70) 4999.89
~1, 7p/48! 5189.97~3.87! 4943.26 (21.06) 4962.83 (20.67) 4996.41
~2, p/48! 4998.47~0.02! 4999.01~0.03! 4998.89~0.02! 4997.68
~2, 2p/48! 144.23 (297.1) 141.72 (297.2) 5000.37~0.02! 4999.48
~2, 3p/48! 4999.95~0.01! 5000.08~0.01! 5000.04~0.01! 4999.53
~2, 4p/48! 121.95 (297.6) 125.64 (297.5) 4999.73~0.01! 4999.19
~2, 5p/48! 4999.95~0.0! 5000.08~0.01! 5000.04~0.01! 4999.53
~2, 6p/48! 144.23 (297) 141.72 (297.2) 5000.37~0.02! 4999.48
~2, 7p/48! 4998.47~0.02! 4999.01~0.03! 4998.89~0.02! 4997.68
~3, p/48! 5189.97~3.87! 4943.26 (21.06) 4962.83 (20.67) 4996.41
~3, 2p/48! 162.59 (296.7) 135.48 (297.3) 4964.71 (20.70) 4999.89
~3, 3p/48! 5203.38~4.09! 4944.36 (21.10) 4964.21 (20.70) 4999.16
~3, 4p/48! 105.46 (297.9) 133.91 (297.3) 4964.26 (20.70) 4999.18
~3, 5p/48! 5203.38~4.09! 4944.36 (21.10) 4964.21 (20.70) 4999.16
~3, 6p/48! 162.59 (296.7) 135.48 (297.3) 4964.71 (20.70) 4999.89
~3, 7p/48! 5189.97~3.87! 4943.26 (21.06) 4962.83 (20.67) 4996.41
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Fig. 15 The centerpoint deflection versus the change of shell curvature in
Case 1
Fig. 16 Displacement of u 1 in Case 2

Fig. 17 Displacement of u 2 in Case 2

Fig. 18 Displacement of w in Case 2
hanics
Fig. 19 Stress resultant N1 in Case 2

Fig. 20 Stress resultant N2 in Case 2

Fig. 21 Stress resultant N12 in Case 2
MAY 2003, Vol. 70 Õ 401



ion
as-

d
by-
rob-
t to
ase
n,

the
ent
is
has
and
ft-
ns

-
ns
n
in
.

and
t is
the
ur-

nta-
in

ng,
erits:
s,
pli-

t is
ent
by

ac-
of

tive.
Fig. 22 Moment resultant M1 in Case 2

Fig. 23 Moment resultant M2 in Case 2

Fig. 24 Moment resultant M12 in Case 2
402 Õ Vol. 70, MAY 2003
N are 12 in two cases, for example. The larger valuesM andN
make every collocation point close to the adjacent collocat
points. That will match the position of concentrated loading
ymptotically. In group~b!, the effects ofsz , t1z , andt2z (z is the
direction of the normal to the middle surface! are neglected owing
to the thin shell theory, nevertheless the terms ofsz , t1z , andt2z
~interlaminar stresses! should be considered in thick laminate
anisotropic shells. On the other hand, it is possible that the Che
shev collocation method can be used to handle the nonlinear p
lems. As for the nonlinear problems the efforts should be pu
solve a system of nonlinear partial differential equations. Ple
refer to Refs.@14#, @15#. Some methods, like the Picard iteratio
are possibly useful for solving the nonlinear problems.

From the section of examples, compare the solutions of
Chebyshev collocation method to those by the finite elem
method and NASTRAN software in Cases 1 and 2. NASTRAN
a precise and reliable finite element analysis software that
been widely used in many fields, such as science, physics,
engineering. In the two cases, the solutions of NASTRAN so
ware are listed in comparison with the results in colum
~C–8–8!, ~C–10–10!, and~C–12–12! of the Chebyshev colloca
tion method. It is found that most of the values of error in colum
~C–8–8! and ~C–10–10! are much greater than those in colum
~C–12–12!. The result of the Chebyshev collocation method
column~C–12–12! are very close to that by NASTRAN software
That implies the Chebyshev collocation method is a correct
acceptable one. As for the curvature effect on deflection, i
obviously observed that the higher the curvature, the larger
deflection in both cases. That strongly hints that the original c
vature of a thin shell will affect the deflection significantly.

Conclusion
The Chebyshev collocation method is proposed herein to te

tively solve most of the problems of laminated anisotropic th
shells with any boundary conditions due to any type of loadi
except the concentrated load. The method possesses two m
~a! it is more efficient and applicable than traditional method
e.g., the Fourier series method, to handle the problems of com
cated material properties and boundary conditions, and~b! the
analytical results of the method are a group of functions tha
more useful than those of finite difference and finite elem
methods. The numerical results in comparison with those
NASTRAN software prove that the proposed method is satisf
torily acceptable. To the extension, the problems of any type
loading and complex geometry are the further research objec
Fig. 25 The centerpoint deflection versus the change of shell curvature in
Case 2
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Nomenclature

A11,A12,¯ ,A66 5 extensional stiffness
A1 ,A2 5 Laméparameter

amn ,bmn ,cmn 5 coefficients of Chebyshev series
B11,B12,¯ ,B66 5 coupling stiffness

D11,D12,¯ ,D66 5 bending stiffness
E1 ,E2 ,G12,n12 5 mechanical properties of a lamina with

unidirectional fibers
Ĕ , F̆ , Ğ 5 first fundamental magnitudes of shell

theory
f 1 , f 2 , f 3 5 functions of curvilinear coordinates

Kn 5 normal curvature
L̆ , M̆ , N̆ 5 second fundamental magnitudes of shell

theory
n 5 unit normal vector

N1 ,N2 ,N12 5 stress resultants
M1 ,M2 ,M12 5 moment resultants

Q1 ,Q2 5 shear stress resultants ina1 and
a2-directions

Q11,Q12,¯ ,Q66 5 reduced stiffness in natural coordinate
system

Q̄11,Q̄12,¯ ,Q̄66 5 reduced stiffness in arbitrary coordinate
system

r 5 position vector
R 5 radius of a cylindrical shell

R1 ,R2 5 radii in a1 anda2-directions
T12,T21,V1 ,V2 5 Kirchoff’s effective shear stress resultants

Tn(x) 5 the nth-order Chebyshev polynominal
T̂m(a1), T̃n(a2) 5 modified Chebyshev polynomials in

specified intervals
u1 ,u2 ,w 5 displacements ina1 ,a2 and normal to the

surface directions
Journal of Applied Mechanics
a1 ,a2 ,z 5 curvilinear coordinates of the surface
b1 ,b2 5 rotations tangential to the reference surfa

«1
0 ,«2

0 ,g12
0 5 strains at the laminate geometry midplane

k1 ,k2 ,k12 5 curvatures of the laminate
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Analysis of a Plate Containing
a Polygon-Shaped Inclusion
With a Uniform Eigencurvature
An infinite isotropic plate containing a polygon-shaped inclusion with a uniform eig
curvature is analyzed. An algorithmic closed-form solution of the curvature is derived
both interior and exterior points of the polygon.@DOI: 10.1115/1.1572898#
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1 Introduction
A problem of an infinite isotropic plate with an embedded

homogeneity or external reinforcement under thermomechan
loading is of practical interest since it has been found in ma
engineering applications. A particular example in aerospace a
cation is a bonded composite repair over a cracked metallic st
ture. A repair method using composite patches to reinforce
cracked structure has been shown to be very promising owin
the light weight, high stiffness and strength of the composite. T
inhomogeneous plate under thermo- mechanical loads will ind
both bending and in-plane deformations,@1#. This problem can be
solved more conveniently by the equivalent inclusion method
which the stresses and strain induced by an inhomogeneity o
pied regionV will be approximated by those induced by th
eigenstrains and eigencurvatures in the same region of the ho
geneous material when these eigenstrains and eigencurvature
selected appropriately,@1#. Closed-form solutions for inclusion
problems with eigenstrains and eigencurvatures are, there
also of practical interests. While most existing works on inclus
problems concern with a plane or three dimensional solid cont
ing eigenstrains@see the book by Mura@2# for the comprehensive
reviews#, only few deals with a plate containing eigencurvatur
Beoms@3# was the first one to consider the problem of a pla
containing an elliptical inclusion with a uniform eigencurvatur
The approach employed by Beoms@3# will be extended here to
include the analysis of a polygon-shaped inclusion with a unifo
eigencurvature. The curvature and corresponding resultant
ment are obtained by performing the integrations according to
Rodin’s algorithmic solution procedure,@4#, for a two-
dimensional planar inclusion with uniform eigenstrains. Anoth
algorithmic solution to the uniform eigenstrain problem also d
velops closed-form solutions that are used in a computational
proach to describe elastic fields in a polygon-shaped inclus
@5#. However, the computational approach taken by Rodin is p
ticularly attractive because it is simple and robust.

2 Formulation
Consider a deformation of an infinite isotropic plate contain

a polygonal subregionV in which a uniform eigencurvaturek i j* is
prescribed. Following Beom@3#, the curvaturek i j (x) and the
eigencurvaturek i j* are related by an Eshelby-type tensorSi jkl such
that

k i j ~x!5Si jkl ~x!kkl* (1)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2000; final revision, Aug. 19, 2002. Associate Editor: B. M. Moran. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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where

Si jkl ~x!52F E
V

M̃ kl~j,x!dAG
,i j

, (2)

M̃ kl~j,x!52
1

4p F ~11n!lnrdkl1~12n!
~jk2xk!~j l2xl !

r2 G ,

r5uj2xu, (3)

d i j is the Kronecker delta,n is the Poisson ratio, and the subscri
comma denotes a partial differentiation with respect to in-pla
coordinates.

Introducing integralsH andHkl defined, respectively, by

H~x!5E
V

lnrdA

Hkl~x!5E
V

~jk2xk!~j l2xl !

r2
dA, (4)

thenSi jkl (x) in Eq. ~2! can be rewritten as

Si jkl ~x!5
1

4p
@~11n!H ,i j dkl1~12n!Hkl,i j #. (5)

An algorithm to evaluateSi jkl as prescribed by Eq.~5! for an
arbitrarily polygonal region will be delineated in the next sectio
OnceSi jkl andk i j are determined, respectively, from Eqs.~5! and
~1!, the resultant moment is then computed from the curvature
@3#,

Mi j 5H Di jkl ~kkl2kkl* ! inside V

Di jkl kkl outside V (6)

whereDi jkl is the bending stiffness tensor and it is defined in@6#.

3 Algorithm
Si jkl is evaluated by using Rodin’s algorithm@4#. This algo-

rithm will be briefly summarized here. The reader should refer
@4# for more details. Rodin’s algorithm is implemented in thr
stages. First, the inclusion domainV is decomposed into a set o
triangular elements in such a way thatx, the point where the
solution is evaluated is a common vertex of all the elemen
Second,H, Hkl , and thusSi jkl are calculated for each element
its element coordinate system and transform the component
Si jkl to global coordinates. Third,Si jkl is assembled from the el
emental contributions. Using Rodin’s terminology,@4#, the trian-
gular elements which make up of the domainV are called du-
plexes and they are referred to as simplexes for the case of
triangles. Since a duplex can be formed from two simplexes

3,
on
art-

nta
after
03 by ASME Transactions of the ASME



Fig. 1 Two-dimensional construction of duplexes used in Rodin’s algorithm, †4‡. Part „a… shows the global structure and coordi-
nate systems. Parts „b… and „c… show typical duplexes, with vertices shown as filled circles. In the „h,z… coordinate system, for
duplex „b… add the simplex with vertices „0,0…, „b ,cÀ

…, „b,0… to the simplex with vertices „0,0…, „b,0…, „b ,c¿
…, while for duplex „c…

subtract the simplex with vertices „0,0…, „b,0…, „b ,cÀ
… from the simplex with vertices „0,0…, „b,0…, „b ,c¿

….
t

t

,
e

l

the computation for the latter is more efficient than that for
former, the elemental tensorSi jkl will be derived here for a sim-
plex in its element coordinate system.

Referring to Fig. 1, let us define the element coordinate sys
as follows. It has the origin atx, basis vector~n,t! wheren is an
unit vector outward normal to the edge andt is the tangent vector
and the corresponding coordinates~h, z!. In these coordinates, th
positions of vertices are represented by the pairs~b, c1) and ~b,
c2). For a convex polygon,b is positive whenx is an interior
point of V and becomes negative for otherwise. For a simp
with one of the vertices defined by~b,c!, H andHkl in Eq. ~4! can
be rewritten as

H~x!5
1

2E0

bE
0

ch/b

ln~h21z2!dzdh,

Hzz~x!5E
0

bE
0

ch/b z2

h21z2
dzdh,

(7)

Hzh~x!5Hhz~x!5E
0

bE
0

ch/b zh

h21z2
dzdh,

Hhh~x!5E
0

bE
0

ch/b h2

h21z2
dzdh,

which, upon integration, will yield the following results:
Journal of Applied Mechanics
he

em

ex

H~b,c!52
b

4 F3c22b tan21S c

bD2cln~b21c2!G ,
Hzz~b,c!5

b2

2 F c

b
2tan21S c

bD G ,

Fig. 2 Geometrical parameters of the duplexes for evaluating
the asymptotic form of the vertex singularity, †4‡
MAY 2003, Vol. 70 Õ 405



Hzh~b,c!5Hhz~b,c!5
b2

4
@ ln~b21c2!2 lnb2#,

(8)

Hhh~b,c!5
b2

2
tan21S c

bD .

To obtain the tensorSi jkl in the global coordinate system,H and
Hkl must be differentiate with respect tox as prescribed in~5!.
However, it is more convenient to obtainSi jkl in the element
coordinate system since~i! b5b(x), c5c(x) and~ii ! in the latter
coordinates]b/]h 5 ]c/]z 521 and]b/]z 5 ]c/]h 50. It can

Fig. 3 Regular polygon-shaped inclusions
406 Õ Vol. 70, MAY 2003
be shown that by using Voigt’s convention,Si jkl in the element
coordinate system is represented by a 333 matrix as

S115Shhhh5
1

4p F2a2
~22n!

2
sin2a1

~12n!

8
sin4aG

S125Shhzz5
1

4p F2na1
~122n!

2
sin2a2

~12n!

8
sin4aG

S135Shhhz5
~n21!

32p
@526cos2a1cos4a24 log~sec2a!#

S215Szzhh5
1

16p
@2n2~12n!cos2a#sin2a

S225Szzzz5
1

16p
@21~12n!cos2a#sin2a

S235Szzhz5
1

8p
@~12n!cos2 acos2a#

S315Shzhh5
1

32p
@3~n21!14cos2a2~12n!cos4a

12~11n!log~sec2a!
Fig. 4 Curvatures k11 and k22 in regular polygon-shaped inclusions along
the x 1-axis for an eigencurvature k i j*Ä„1, 0, 0…. „a… k11 , „b… k22
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Fig. 5 Curvatures k12 in regular polygon-shaped inclusions along x 1-axis for an
eigencurvature k i j*Ä„0, 0, 1…
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S325Shzzz5
1

32p
@~12n!14ncos2a1~12n!cos4a

12~11n!log~sec2a!

S335Shzhz5
1

4p
@~12n!cosasin3 a#

a5tan21S c

bD . (9)

Similar to the strain solution obtained earlier by Rodin@4# for a
‘‘planar’’ inclusion with a uniform eigenstrain, the present curv
ture solution has a logarithmic singularity near the vertex and
not constant inside subregionV. This vertex singularity can be
addressed in a similar manner as in@4#. By assigning the sub-
scripts 1 and 2 to the edges that form the vertex~see Fig. 2! and
denoting lengths of these edges by,1 and ,2 , from Fig. 2, the
following relations hold for a pointx close to the vertex:

b15dsinb1 , c1
15dcosb1 , c1

252,11dcosb1'2,1 ,

b25dsinb2 , c2
15,22dcosb2',2 , c2

252dcosb2 ,

whered is the distance fromx to the vertex and it approaches
By evaluatingSi jkl at x @via Eq. ~9!# using the above expression
for b and c, and discarding all nonsingular terms,Si jkl takes the
following asymptotic form:

S'
1

16p
~M12M2!ln

,

d
,

where, is a representative edge length, tensorsM1 and M2 are
represented by the same matrix in the basis (n1 , t1) and (n2 , t2)
and that matrix is defined by

M5F 0 0 2~12n!

0 0 0

11n 11n 0 G .

4 Numerical Examples
Numerical examples of the curvature given by Eq.~1! are

shown in this section.k i j are computed for a family of regula
polygons inscribed into a unit circle centered at the originO of the
coordinate system as shown in Fig. 3. The Poisson ratio of
echanics
-
t is

.
s

the

plate is assumed to be 0.3 throughout the computation. The v
ces of the polygon in polar coordinates are prescribed by

r k51 and uk52p
~k21!

p
; k51,2, . . . ,p,

where p is the number of sides of the polygon. Computation
results ofk11 andk22 along thex1-axis for k i j* 5(1,0,0) and for
various values ofp are plotted in Figs. 4~a! and Fig. 4~b!, respec-
tively. It should be noted thatk12 are equal to 0 in this case. Th
result from Beom@3# for a circular inclusion is also included in
the figure for comparison. Similarly, the results ofk12 along the
x1-axis fork i j* 5(0,0,1) are plotted in Fig. 5 whilek11 andk22 are
determined to be zero. In Figs. 4 and 5,k11, k22 and k12 are
evaluated along thex1 axis using twenty points at equal spac
over the half-polygonal domain and these points correspond
those chosen on the plots. From Figs. 4 and 5, the curvature
tributions are not uniform inside the inclusion but approach to
Beom’s solutions with the increasing number of sides.

5 Conclusions
An infinite isotropic plate with a uniform eigencurvature in

polygon-shaped inclusion is analyzed. The method employe
simple and robust. An algorithmic closed-form solution of t
curvature is obtained. This solution can be used as one of the b
solutions for obtaining the elastic fields in an isotropic plate co
taining a general shaped inhomogeneity. The solution of the la
problem is of practical interest because it finds a wide range
applications including analyses and designs of adhesively bon
repairs with an octagonal patch in aging aircraft,@7,8#.
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Local Solutions in Potential
Theory and Linear Elasticity Using
Monte Carlo Methods
A numerical method called the boundary walk method is described in this paper.
boundary walk method is a local method in the sense that it directly gives the soluti
the point of interest. It is based on a global integral representation of the unkn
solution in the form of potentials, followed by evaluating the integrals in the resul
series solutions using Monte Carlo simulation. The boundary walk method has
applied to solve interior problems in potential theory with either Dirichlet or Neuma
boundary conditions. It has also been applied to solve interior problems in linear e
ticity with either displacement or traction boundary conditions. Weakly singular integ
formulations in linear elasticity, to which the boundary walk method has been applied
also derived. Finally, numerical results, which are computed by applying the boun
walk method to solve some two-dimensional problems over convex domains in po
theory and linear elasticity, are presented. These solutions are compared with the k
analytical solutions (when available) or with solutions from the standard boundary
ment method.@DOI: 10.1115/1.1558074#
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1 Introduction
The commonly used numerical methods in physics and e

neering can be roughly categorized as global or local meth
Global methods are those which provide the solution over
entire domain of the problem. The finite element method and
boundary element method are the two most commonly used
bal methods in practice. The main disadvantage of global meth
is that they are indirect. The solution first needs to be compu
over the entire domain of the problem and then the solution at
points of interest needs to be interpolated. This makes the gl
methods, in general, inefficient if solutions at only a few poin
are desired. Another disadvantage associated with a global me
is the need to discretize the domain~e.g., finite element method!
or the surface of the domain~e.g., boundary element method!.
Meshing is a burdensome task and the conversion of the dom
surface to elements in the finite element method/boundary elem
method is often computationally intensive. Also, the discretizat
involved may lead to inexact problem geometry and inaccu
implementation of the boundary conditions.

Local methods are those which give the solution at the poin
interest directly and generally do not need any discretization
the domain/surface. Such methods have several advantages
the global methods. For example, they are inherently parallel
hence much less programming effort is required to parallelize
code when compared with either the finite element method or
boundary element method. These methods are especially
suited to boundary value problems where critical regions, suc
points in the domain where a function of interest attains its ma
mum or minimum value, are well known. In such cases there is
need to obtain the solution in the entire domain since it is o
required at a few points~see, e.g., Arsenjev@1#!. Some local meth-
ods based on Brownian motion simulation~see Kim@2#! are effi-

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 3
2001; final revision, Aug. 20, 2002. Associate Editor: D. A. Kouris. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart
of Mechanical and Environmental Engineering University of California
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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cient for homogenization problems for materials with hetero
neous or random material properties. But the main disadvan
of the local methods is their rather limited applicability~at
present! to solve engineering problems when compared to me
ods like the finite element method or the boundary elem
method. Increasing the versatility of local methods is a matte
continuing research.

The present paper illustrates the application of a local meth
called the boundary walk method, to solve problems in poten
theory and linear elasticity on two-dimensional convex domai
Numerical examples are presented in the form of some sim
examples on convex domains.

The local method described in this paper is called a bound
walk method since it simulates a random walk on the boundar
the domain. It is based on a global integral representation of
solution in a form of a potential. The solution of the integr
equation of the corresponding density is sought in the form o
power series. The individual terms in the series are then evalu
using Monte Carlo integration. This avoids any meshing and le
to an accurate implementation of the problem geometry
boundary conditions. It also avoids the ‘‘curse of dimensionalit
associated with classical quadrature schemes~see Evans@3#!. A
detailed description of the boundary walk method can be foun
Sabelfeld@4# and @5#. Hoffman @6# has also described the bound
ary walk method to solve Laplace’s equation with Dirichl
boundary conditions. A similar method is also used in practice
study neutron and other particle transport problems in physics~see
Kalos @7#!.

Another local method based on an integral representat
called the walk on sphere method, is presented in Sabelfeld@4# for
solution of the Laplace, Poisson, Helmholtz, and biharmo
equations. A similar method, called the floating random walk, h
been applied by Haji-Sheikh@8# to obtain solutions of equation
for steady and transient heat conduction. Sabelfeld@9# has also
expanded the walk on sphere method for systems of elliptic eq
tions with constant coefficients. A brief decription and applicati
of the walk on sphere method also appears in Arsenjev@1#. The
walk on sphere method is based on a local integral representa
of the solution as opposed to the boundary walk method. T
main disadvantage of the walk on sphere method~see Hoffman
@6#! is the need to use very small random steps near the bound
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–
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Also the determination of the closest boundary position, which
needed at every step, is nontrivial for complex domains.

Another local method called the random walk method~see
Chati @10#! is also used to numerically solve a class of seco
order partial differential equations. It is based on the propertie
diffusion processes, Itoˆ calculus and Monte Carlo simulation an
details can be found in Øksendal@11#.

One of the main contributions of the current paper is tha
demonstrates the application of the boundary walk method
solve problems in potential theory with either Dirichlet or Ne
mann boundary conditions and linear elasticity with either d
placement or traction boundary conditions. The Dirichlet probl
for Laplace’s equation is included for completeness even thoug
has been previously solved by Hoffman@6#. The present pape
also presents weakly singular formulations for displacement
scribed and traction prescribed problems in linear elasticity,
two-dimensional simply connected domains that are suitable
use with the boundary walk method. The use of a weakly sing
formulation simplifies the solution procedure considerably as
plained later. The weakly singular formulation for the displac
ment problem is based on the double layer potential of the sec
kind as described in Kupradze@12#. The weakly singular formu-
lation for the traction problem is based on the one given
Mikhailov @13# and the fact that stresses everywhere in a body,
traction prescribed problems, are independent of mate
constants.

The remainder of the paper is organized as follows. Sectio
presents the theoretical background of the boundary walk met
Section 3 describes the procedure to obtain local solutions of
Laplace’s equation subjected to either Dirichlet or Neuma
boundary conditions. Section 4 describes the solutions to
Navier’s equation subjected to either displacement or trac
boundary conditions using weakly singular formulations. Sect
5 presents numerical results obtained by applying the boun
walk method to solve some test problems. Finally, some conc
ing remarks appear in Section 6.

Although attempts to numerically solve elasticity problems
the boundary walk method exist in the literature~e.g., Shia@14#!,
to the best of the author’s knowledge, the present work repres
the first careful attempt at solving a certain class of elastic
problems by the boundary walk method. In particular, appropr
integral representations are chosen for solving the displacem
prescribed and traction prescribed boundary value problems.
fi
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2 Theoretical Background
This section is divided into three parts. The first part descri

the class of problems which can be solved using the bound
walk method and the basic procedure followed in obtaining
required solution. The second part defines the estimators use
evaluate the multidimensional integrals occurring in the soluti
The third part describes the densities used in generating the
dom variables which are used in the estimators.

2.1 Solution of an Integral Equation. The boundary walk
method is mainly concerned with evaluating integrals of the ty

I x0
5Rm~x0!5E

G
R~x0 ,y!m~y!dS~y! x0PD (1)

where

m~y!5lE
G
K~y,y8!m~y8!dS~y8!1 f ~y! yPG[]D. (2)

HereD,Rn, lPR andI x0
denotes the value of the integral func

tional I (x) at the point x0 . For potential problems,R(x,y),
K(x,y), m(y), f (y), and I (x) are scalar valued functions. Fo
problems in linear elasticity,R(x,y) andK(x,y) are matrix valued
functions whilem(y), f (y), andI (x) are vector valued functions

First, Eq. ~2! is solved by assuming thatm(y) can be repre-
sented as a uniformly convergent series of the form

m~y!5m0~y!1lm1~y!1l2m2~y!1 . . . . (3)

Substituting Eq.~3! into Eq. ~2! and equating equal powers ofl,
one obtains

m0~y!5 f ~y!

m1~y!5K1m0~y!

m2~y!5K2m0~y! (4)

]

mk~y!5Kkm0~y!.

Here
lent
rlo
To obtain I x0
in Eq. ~1!, the series~3! is first multiplied by

R(x0 ,y) and then integrated termwise overG. This is justified
since the series is assumed to be uniformly convergent. The
expression forI x0

is then given by

I x0
5(

n50

`

lnRKnf ~y!. (5)

2.2 Monte Carlo Integration. Monte Carlo integration is
used to evaluate the individual terms in Eq.~5!. Monte Carlo
nal

integration converts the calculation of an integral to an equiva
expected value problem. The basic idea of the Monte Ca
method used to evaluate integrals is briefly explained next.

Consider the evaluation of an integral

I 5E
a

b

f~x!dx5E
a

b

p~x!
f~x!

p~x!
dx. (6)

Supposep(x) is non-negative,*a
bp(x)dx51 and

p~x!.0 if f~x!Þ0.
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Hencep is a density function and

I 5EFf~x!

p~x! G
where E(•) is the expectation operator. Based on the samp
x1 , . . . ,xN from p, the estimator of Eq.~6! is then given by

Î 5
1

N (
i 51

N
f~xi !

p~xi !
.

The Monte Carlo method used in the present paper~see Rubin-
stein @15#! is an extension of this idea to evaluate multidime
sional integrals. The reason behind using this particular metho
that it efficiently exploits the iterative nature of the individu
terms in the series solution.~Please refer to Fig. 1.! Let
Y5$y0 ,y1 , . . . yn , . . . % be a Markov chain with $yiPG,i
50 . . .n%, wherey0 is distributed inG with initial densityp0(y0)
and the next points are determined from the transition den
p(yi 21 ,yi). Hencep0(y0)dS(y0) is the probability of going from
the given pointx0 , to a neighborhooddS(y0) of the point y0 .
Similarly p(yi 21 ,yi)dS(yi) is the probability of going from point
yi 21 to a neighborhooddS(yi) of the pointyi given pointyi 21 .
The choice ofp0(y0) and p(yi 21 ,yi) can be arbitrary but they
need to satisfy the following constraints:

p0~y0!.0 if R~x0 ,y0!Þ0

p~yi 21 ,yi !.0 if K~yi 21 ,yi !Þ0.

Then

E@zk#5E
G
R~x0 ,y0!Kkf ~y0!dS~y0!

where the random variable

zk5
R~x0 ,y0!

p0~y0!
Wkf ~yk! (7)

has densityp0(y0)p(y0 ,y1) . . . p(yk21 ,yk) and

Wk5Wk21

K~yk21 ,yk!

p~yk21 ,yk!
, W0[1.

The random variable defined in Eq.~7! is used to construct a
direct estimator given by

Î 5
1

N (
i 51

N

zk
i (8)

wherezk
i is the ith sample used to evaluate thekth term in the

series.
Similarly,

E@zk* #5E
G
R~x0 ,y0!Kkf ~y0!dS~y0!

Fig. 1 Boundary walk method
410 Õ Vol. 70, MAY 2003
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where the random variable

zk* 5R~x0 ,yk!Wk*
f ~y0!

p0~y0!
(9)

has densityp0(y0)p(y0 ,y1) . . . p(yk21 ,yk) and

Wk* 5
K~yk ,yk21!

p~yk21 ,yk!
Wk21* , W0* [1.

The random variable defined in Eq.~9! is used to construct an
adjoint estimator given by

Î 5
1

N (
i 51

N

zk*
i (10)

wherezk*
i is the ith sample used to evaluate thekth term in the

series.
The random variableszk andzk* are scalars for potential prob

lems and vectors for two and three-dimensional problems in lin
elasticity.

2.3 Densities. As mentioned earlier, the initial density an
the transition density can be chosen arbitrarily as long as the
evant constraints are satisfied. The procedure described earli
estimate the integrals is identical to a standard variance reduc
technique called importance sampling discussed in the literat
It is a well-known fact~see Rubinstein@15#! that any positive
function that has a shape similar to the integrand and that ca
normalized, integrated and then inverted may yield a density
reduces the variance of the estimator. Hence, a judicious us
the density helps in reducing the variance of the estimator.

In the present paper, the initial density for all problems~poten-
tial and linear elasticity! is chosen to beR(x,y), the kernel in Eq.
~11!. The transition density is chosen to beuK(x,y)u, where
K(x,y) is the kernel in Eq.~12!. These particular choices of thes
densities are motivated by their physical interpretation and by
fact that they cancel out the weak singularities present in the
tegrand. These densities chosen are also known to be the op
densities for potential problems.

The physical interpretation ofR(x,y) with (xPD, yPG) for
convex domains is explained next.~Please refer to Fig. 2.! The
first point on the boundary,y0 , is chosen by shooting a ray from
the pointx0 in a direction which is uniformly distributed in the
interval @0,2p#, and by finding its point of intersection with th
boundary. Since only convex bodies are considered, the ray
intersect the boundary at only one point, sayy0 . Then the prob-
ability of going from the pointx0 to a neighborhood,dS(y0), of
the pointy0 , is given byp0(y0)dS(y0)5dv/(2p). Heredv is
the angle subtended bydS(y0) on a unit circle centered atx0 and
is given by cos(fy0 ,x0

)dS(y0)/r. ~It is analogous to the solid angl
subtended at a point by a surface in a three-dimensional probl!
Hence

p0~y0!dS~y0!5
dv

2p
5

cos~fy0 ,x0
!dS~y0!

2pr
5R~x0 ,y0!dS~y0!.

Fig. 2 Initial distribution
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p0~y0!5R~x0 ,y0!.

The transition densityuK(x,y)u with (x,yPG), can be interpreted
similarly. ~Please refer to Fig. 3.! It can be shown that

p~yi 21 ,yi !dS~yi !5
dv

p
5

cos~fyi ,yi 21
!dS~yi !

pr

5uK~yi 21 ,yi !udS~yi !.

Hence

p~yi 21 ,yi !5uK~yi 21 ,yi !u.

Using the above densities, the integrals occurring in Eq.~5! are
estimated by using the direct estimator~see Eq.~8!! or the adjoint
estimator~see Eq.~10!!.

Boundary integral formulations for problems in potential theo
and linear elasticity, which are suitable for the application of
boundary walk method, are presented next. The reader is refe
to, e.g., Jaswon@16# for a general discussion of indirect bounda
integral formulations in potential theory and elasticity.

3 Potential Theory
A formulation for the solution of a Dirichlet problem using

double layer potential~see Gu¨nter @17#!, and for the solution of a
Neumann problem using a single layer potential~see Gu¨nter @17#!
are presented. The choice of the formulations~i.e., single or
double layer! is dictated by the general form of Eqs.~1! and ~2!.

3.1 Interior Dirichlet Problem. The interior Dirichlet
problem in potential theory is concerned with the solution of

Du~x!50, xPD

subject to

u~y!5g~y!, yPG

at a pointx0PD. The solution can be written in the form of
double layer potential

u~x0!5
1

2p E
G

]

]ny
loguy2x0um~y!dS~y!

5
1

2p E
G

cos~fy,x0
!

r
m~y!dS~y! (11)

wherem(y) satisfies the integral equation

m~y!52
1

p E
G

cos~fy8,y!m~y8!

r
dS~y8!12g~y!. (12)

Herefy8,y denotes the angle between the inward normal at p
y8 and the ray from pointy8 to y. It can now be observed that th
boundary walk method can be applied to obtainu(x0) with

Fig. 3 Intermediate distribution
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R~x0 ,y!5cos~fy,x0
!/~2pr !,

K~y,y8!52cos~fy8,y!/~pr !, f ~y!52g~y! and l51.

One point to note is that the series~3! needs to be modified be
causel521 is a pole of the resolvent of the kernel~see Gu¨nter
@17#!. This implies that the radius of convergence of the serie
strictly less than 1 and hence would diverge when evaluate
l51. It is modified by the method of pole elimination whic
consist of first multiplying both sides of the series~3! by ~l11!,
then collecting the coefficients with equal powers ofl. The modi-
fied series is then multiplied byR(x0 ,y0) and integrated term-
wise. u(x0) is obtained by evaluating the series atl51 and is
given by

u~x0!5
1

2
Rf ~y!1

1

2 (
n51

`

R~Kn21f ~y!1Knf ~y!!. (13)

The individual terms in Eq.~13! are evaluated using the direc
estimator given in Section 2.2 and the densities given in Sec
2.3.

3.2 Interior Neumann Problem. The interior Neumann
problem in potential theory is concerned with the solution of

Du~x!50, xPD

subject to

]u~y!

]n
5g~y!, yPG

and

E
G
g~y!dS~y!50

at a pointx0PD. The solution can be written in the form of
single layer potential

u~x0!5
1

2p E
G

loguy2x0um~y!dS~y! (14)

wherem(y) satisfies the integral equation

m~y!5
1

p E
G

cos~fy,y8!m~y8!

r
dS~y8!22g~y!. (15)

The boundary walk method is now applied to obtain the solut
at u(x0) with

R~x0 ,y!5 loguy2x0u/~2p!, K~y,y8!52cos~fy,y8!/~pr !,

f ~y!522g~y! and l521.

It is interesting to note that the series~3! does not need any modi
fication for the interior Neunmann problem and can be direc
evaluated atl521. This is because the solvability conditio
needs to be satisfied for the solution to exist and the satisfactio
the solvability condition leads to the cancellation of the pole
the resolvent~see Gu¨nter @17#!. As a result, the radius of conver
gence of the series is strictly greater than 1 and hence it does
diverge when evaluated atl521. u(x0) is therefore given by

ux0
5(

n50

`

~21!nRKnf ~y!. (16)

The individual terms in Eq.~16! are evaluated using the adjoin
estimator given in Section 2.2 and the densities given in Sec
2.3.

4 Linear Elasticity
It can be easily observed that the usual boundary integral

mulation given by Rizzo@18#
MAY 2003, Vol. 70 Õ 411
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ui~x0!5E
G
Ui j ~x0 ,y!t j~y!dS~y!

2E
G
Ti j ~x0 ,y!uj~y!dS~y! x0PD

(17)

ui~y!5E
G
2Ui j ~y,z!t j~z!dS~z!

2E
G
2Ti j ~y,z!uj~z!dS~z! y,zPG

is not suitable for the application of the boundary walk meth
HereUi j (x,y) ~see Eq.~25!! andTi j (x,y) ~see Eq.~26!! are the
usual kernels found in the boundary element method literat
Another important point to note is that the above formulation
strongly singular. The difficulty in using a strongly singular fo
mulation with the densities defined earlier is that the estima
~see Eq.~8! and Eq. ~10!! have infinite variance. One way t
overcome this problem is to define different estimators~see Sa-
belfeld @4#!. But this is a computationally expensive task. Anoth
possible way is to use different densities while preserving
earlier definition of the estimators. But then one loses the adv
tage of working with densities that are very easy to sample fro
and at the same time have a simple physical interpretation
overcome the problems associated with using a strongly sing
formulation, a weakly singular formulation is used for displac
ment prescribed and traction prescribed problems. These form
tions are weakly singular if the boundaryG is assumed to be
satisfy the following condition:

ucos~fy8,y!u,Cuy2y8ul, y8,yPG, C5constant, 0,l<1

wherefy8,y is the angle between the inward normal at pointy8
and a ray from pointy8 to pointy. The derivation of these weakly
singular formulations is presented next.

4.1 Displacement Prescribed Problem. The derivation of
the weakly singular formulation presented here for tw
dimensional problems is based on a similar derivation for thr
dimensional problems given in Kupradze@12#. The derivation of
the usualTi j (x,y) kernel found in the Rizzo@18# formulation is
also given simultaneously for the purpose of comparison.

The displacement field in a linear isotropic elastic solid in t
absence of body forces is governed by the Navier equation,

mDu1~l1m!¹~¹•u!50, (18)

wherem andl are the Lame` constants. The standard stress ten
is given by

S5m~¹u1¹uT!1l~¹•u!I . (19)

Equation~18! can also be written as

mDu1~a1b!¹~¹•u!50 (20)

wherea and b are constants and~a1b!5~l1m!. Equation~20!
leads to an introduction of a pseudo-stress tensor which is g
by

SP5m¹u1a¹uT1b~¹•u!I . (21)

In the case whena5m andb5l, the pseudo-stress tensor is ide
tical to the standard stress tensor. Multiplying the standard st
tensorS and the pseudo-stress tensorSP by the normaln on the
boundary gives the standard tractiont and the pseudo-tractiontP

i.e.,

t~u!5Sn, tP~u!5SPn.

Here,
412 Õ Vol. 70, MAY 2003
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t~ !52m
]

]n
~ !1ln¹•~ !1m~n3¹3~ !! (22)

and

tP~ !5~a1m!
]

]n
~ !1bn¹•~ !1a~n3¹3~ !!. (23)

Now the columnsgj (xy), j 51,2 of the Kelvin matrix

U5@g1g2# (24)

with elements

Ui j ~x,y!5~g j ! i5CS ~324n!d i j log r 2
]r

]yi

]r

]yj
D (25)

where

C52
1

8pm~12n!

are fundamental solutions of Eq.~18!. The transpose of the matrix
which results from the application oft to the columns ofU with
respect to pointy gives the usualT matrix with elements

Ti j ~x,y!52
1

4p~12n!r F ]r

]ny
S ~122n!d i j 12

]r

]yi

]r

]yj
D

2~122n!S ]r

]yi
nj~y!2

]r

]yj
ni~y! D G . (26)

As seen from above, the matrixT is strongly singular.
To obtain a weakly singular matrix, consider the action of t

pseudo-traction operator on the columns of~24! with respect to
point y.

Now,

S ]g j~x,y!

]n~y! D
i

5CF1

r

]r

]ny
S ~324n!d i j 12

]r

]yi

]r

]yj
D

2
1

r S ]r

]yj
ni~y!1

]r

]yi
nj~y! D G (27)

Similarly,

~n~y!¹•~g j !! i52C~122n!
1

r

]r

]yj
ni~y!. (28)

Also,

~n~y!3¹3~g j !! i54C~12n!S 1

r

]r

]yi
nj~y!2

1

r

]r

]ny
d i j D .

(29)

Therefore,

Ti j
P~x,y!5~ tP~g j !! i

5
1

r

]r

]ny
F S C~324n!d i j 12C

]r

]yi

]r

]yj
D

3~a1m!24C~12n!ad i j G2
1

r

]r

]yj
ni~y!~C~a1m!

22C~122n!b!2
1

r

]r

]yi
nj~y!~C~a1m!

24C~12n!a!. (30)

It is observed from Eq.~30! that a weakly singular matrix can b
obtained from the matrixTP by choosing

a5
m

324n (31)
Transactions of the ASME
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b5
2m~12n!

~324n!~122n!
.

The transpose of the weakly singular matrix obtained for
above values ofa andb is denoted byT* . The elements ofT* are
given by

Ti j* ~x,y!52
1

p~324n!

1

r

]r

]ny
F ~122n!d i j 1

]r

]yi

]r

]yj
G .

(32)

It is also observed that by choosinga5m andb5l in the matrix
TP, we get the transpose of matrixT as expected.

It can be shown that the columns ofT* satisfy Eq.~18! and
hence it is used to form the double-layer potential of the sec
kind ~see Kupradze@12#!. Using the above potential, the solutio
to the interior displacement problem can be written as

ui~x0!52E
G
Ti j* ~x0 ,y!m j~y!dS~y! (33)

wherem i(y) satisfies the following integral equation:

m i~y!5E
G
2Ti j* ~y,y8!m j~y8!dS~y8!12gi~y! (34)

andgi is the prescribed displacement.
It can now be observed that the boundary walk method can

applied to obtainu(x0) with

R~x0 ,y!52T* ~x0 ,y!, K ~y,y8!52T* ~y,y8!,

f~y!52g~y! and l51.

Hereu(x) andg(y) are vector functions andR(x,y) andT(x,y)
are matrix valued functions.l521 is pole of the resolvent of the
kernel~see Kupradze@12#! and therefore a similar modification t
the one proposed for the Dirichlet problem~for Laplace’s equa-
tion! is needed here. Finally,u(x0) is given by

u~x0!5
1

2
Rf ~y!1

1

2 (
n51

`

R~Kn21f ~y!1Knf ~y!!. (35)

The individual terms in Eq.~35! are then estimated using th
direct estimator defined earlier.

4.2 Traction Prescribed Problem. The approach presente
in the previous section to obtain a weakly singular integral eq
tion is not suitable for the traction prescribed problem because
pseudo-traction has no physical meaning. A rigorous appro
based on using a two-dimensional analog of the Weil potentia
presented in Mikhailov@13# to derive weakly singular integra
equations for traction prescribed problems. It is also explic
pointed out that the stresses obtained for a linearized Stokes
tem~incompressible material! using a hydrodynamic potential of
simple layer, the stresses obtained for an elastic material
n51/2 using a single layer potential, and the stresses obta
using the analog of the Weil potential for an elastic material,
are identical. A simpler approach, based on the above observa
and the fact thatthe stresses everywhere in a body with prescrib
tractions on the boundary are independent of the material c
stants, is used here to derive the weakly singular integral equat
The derivation of the weakly singular formulation for an interi
traction prescribed problem is presented next.

The displacement at a pointx0 in a body with prescribed trac
tions on the boundary can be represented in a form of a si
layer potential:

ui~x0!5E
G
U ji ~y,x0! f j~y!dS~y!. (36)

The corresponding stresses are given by
Journal of Applied Mechanics
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s i l ~x0!5E
G
Sil j ~y,x0! f j~y!dS~y! (37)

where f i(y) satisfies the following integral equation:

f i~y!52E
G
2Sil j ~y8,y!nl~y! f j~y8!dS~y8!12t i~y! (38)

and t i are the prescribed tractions. Here

Sil j ~y,x0!5
1

4p~12n!r F S 2
]r

]yi

]r

]yl

]r

]yj
1~122n!d i j

]r

]yl
D

2~122n!S d i l

]r

]yj
2d l j

]r

]yi
D G . (39)

It is seen that the kernel in Eq.~38! is strongly singular. By mak-
ing use of the previously mentioned observation in Mikhail
@13#, and the fact that for a traction prescribed problem t
stresses are independent of the material constantsn andm, n can
be set to 1/2 in Eq.~39!. This simplifies the equation to

Sil j ~y,x0!5
1

p

1

r

]r

]yi

]r

]yl

]r

]yj
. (40)

Using Eq.~40!, Eq. ~38! can be written as

f i~y!52E
G
2Ki j* ~y8,y! f j~y8!dS~y8!12t i~y! (41)

where

Ki j* ~y8,y!5
1

p

1

r

]r

]yi8

]r

]yj8

]r

]yl8
nl~y!. (42)

It is now observed that the kernel in Eq.~41! is weakly singular.
This solution is identical to the one given in Mikhailov@13#. It is
interesting to point out that the observation of the fact that
stress in an elastic body subjected to traction boundary condit
is independent of material parameters, leads to a very simple d
vation of Eq.~40!.

Equation~37!, along with Eq.~41!, with the kernel given in Eq.
~42!, can now solved fors(x0) with the boundary walk method
with

R~x0 ,y!5S~x0 ,y!, K ~y,y8!52K* ~y8,y!,

f~y!52t~y! and l521.

Hereu(x) andg(y) are vector functions andR(x,y) andT(x,y)
are matrix valued functions. Also the components of stress
represented in a form of a vectors. Now l51 is a pole of the
resolvent of the kernel while the satisfaction of the solvabil
condition leads to the cancellation of the pole atl521 ~see
Mikhailov @13#!. Hence, a modification similar to the one for th
displacement prescribed problem is required ands(x0) is finally
given by

s~x0!5
1

2
Rf ~y!1

1

2 (
n51

`

R~Knf ~y!2Kn21f ~y!!~21!n.

(43)

The individual terms in Eq.~43! are then estimated using th
adjoint estimator defined earlier.

5 Numerical Results
The boundary walk method is used herein to solve some p

lems in potential theory and linear elasticity and the calcula
results are compared with the exact results in most cases.
effect of the geometry of the problem on the accuracy of
computed results is studied. A point to note is that even tho
integral equation formulations for both potential theory and el
ticity has been given for bodies with smooth boundaries, the sa
MAY 2003, Vol. 70 Õ 413
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equations have been used to solve problems having nonsm
boundaries~e.g., a wedge!. An attempt has been made to justify
using the following arguments given in Parton@19#.

The nature of the solution of both potential theory and line
elasticity, in the neighborhood of a corner, has been well stud
Therefore, it seems justifiable to extend formally the equati
derived for smooth boundaries to solve problems with nonsmo
boundaries with proper control based on the known informat
about the properties of the solution.

A more rigorous approach, which involves modifying the go
erning integral equations, is described in detail in Atkinson@20#.

Remark. There are two important issues to consider while co
puting the result using a series expansion in which individ
terms are calculated using Monte Carlo integration:

~a! the number of the terms in a series,n.
~b! the number of samples to evaluate the individual termsN.
A naive approach is adopted in the present paper in deciding

two parameters, and is as follows. The various modifications
the original series which were explained earlier guaranty that
modified series converges uniformly. Therefore, a fixed numbe
terms of the modified series, sayn, are calculated using a fixedN.
The number of samples is chosen so that the standard deviatis,
of each term, is less than a predefined number. The firstk terms
are considered if

uSk112Sku<e

whereSk denotes the partial sum of the firstk terms ande is again
a predefined number. The pair (s,e) will henceforth be referred to
as the tolerance. The numerical results which are computed f
given value of a tolerance are presented next.

Table 1 Solution of a Dirichlet problem on an ellipse with a
Ä1, bÄ2 at uÄpÕ4

r k
Computed

Value Std. Dev
Exact
Value % Error

0.2 4 1.09213 0.01602 1.10614 1.267
0.4 5 1.14196 0.01997 1.12019 1.811
0.6 4 0.98904 0.01543 1.01045 2.119
0.8 6 0.73811 0.02265 0.74902 1.457

Monte Carlo simulation parameters:N5100,000,n57, s50.005,e50.005

Table 2 Solution of a Dirichlet problem on an ellipse with a
Ä1, bÄ5 at uÄpÕ4

r k
Computed

Value Std. Dev
Exact
Value % Error

0.2 4 0.88768 0.01282 0.87573 1.365
0.4 5 0.21791 0.01529 0.20692 5.311
0.6 5 20.79405 0.01488 20.79959 0.692
0.8 6 21.67908 0.01795 21.67502 0.242

Monte Carlo simulation parameters:N5200,000,n57, s50.005,e50.005
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5.1 Potential Theory

5.1.1 Dirichlet Problems. The boundary walk method is
used to solve Dirichlet problems on ellipses withb/a52 and
b/a55, and also on a pie shaped region. For the ellipse proble
the following exact solution is assumed:

u~x,y!5exp~x!cos~y!.

This solution is prescribed on the boundary of each ellipse. T
results at

x5r ~a cos~u!!

y5r ~b sin~u!!

for the ellipse withb/a52 are presented in Table 1.This particu-
lar form of describing the point of interest is followed througho
the paper whenever problems on ellipses are solved.

It is seen that the number of terms required to compute
result ~within a prescribed tolerance! depends on the location o
the point of interest. It is also seen that an increase in the num
of terms included leads to increases in the standard deviatio
the computed answer. The results for the ellipse withb/a55 are
presented in Table 2.

As seen from Table 2, the increase in theb/a ratio leads to an
increase in the number of samples needed to achieve the de
upper bound for the standard deviation in each individual term
also observed that a larger number of terms in the series nee
be considered with the increase in theb/a ratio. The increase in
the number of samples can be explained by the fact that choo
a direction which is uniformly distributed leads to a nonunifor
distribution of points on the boundaries of bodies having elo
gated shapes. As a result more samples are needed to achie
required tolerance. It is also well known that the standard bou
ary element method requires a finer discretization for solvin
problem on an ellipse with an aspect ratio 5 compared with
aspect ratio of 2.

The Dirichlet problem is also solved for the pie shaped reg
shown in Fig. 4 withf53/10p andL51 ~see Atkinson@20#!. The
two sides meeting at the origin are both straight line segment
lengthL, and the remaining portion of the boundary is an arc o
circle which is tangent to the two straight edges. The followi

Fig. 4 Pie-shaped region for the Dirichlet problem
3

488
Table 3 Solution of a Dirichlet problem on a pie with fÄ3Õ10p and LÄ1

f0 f1 f2 f3 f4 f5 f6

Computed
Mean

0.63317 20.57639 0.04940 20.01862 0.00441 0.00158 0.0011

Std.
Dev

0.00281 0.00438 0.00483 0.00487 0.00488 0.00489 0.00

Monte Carlo simulation parameters:N5250,000,s50.005,e50.005
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Table 4 Solution of a Dirichlet problem on a pie with fÄ3Õ10p and LÄ1

f0 f1 f2 f3 f4 f5 f6

Computed
Mean

0.63504 20.57424 0.04732 20.01840 0.00349 20.00148 20.00015

Std.
Dev

0.00141 0.00219 0.00242 0.00244 0.00244 0.00244 0.00

Monte Carlo simulation parameters:N51,000,000,s50.003,e50.003
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solution, which is harmonic in the domain, and has boundary
ues that are smoothly differentiable on the boundary, except
corner, is assumed here:

u~r ,u!5r 10/3sinS 10

3
u D .

Again, this solution is prescribed on the boundary of the p
shaped region. The reason for choosing this particular solutio
that it has been proved by Wasow@21# that in the vicinity of
corner point, the solution to the Dirichlet problem satisfies

u~x,y!5H O~r a! aÞm, a positive integer

O~r a log~r !! a5m, an integer

for 0<r<e, for somee.0, and point (x,y) inside the domain.
Results for the problem withf53/10p andL51 at

x5r cos~u!

y5r sin~u!

for r 50.5 andu53/20p are presented in Table 3.
Heref0 , . . . ,f6 are the first seven terms in the series given

Eq. ~13!. It is observed from Table 3 that the series indeed c
verges for the pie shaped region which has a nonsmooth boun
The desired solution is obtained by considering the first four te
and is given by 0.08756 with a standard deviation of 0.01685.
exact answer is 0.09921. To increase the accuracy and dec
the standard deviation, the values of boths ande were changed to
0.003. To achieve this tolerance, the number of samples wa
creased from 250,000 to 1,000,000. The results forN
51,000,000 are shown in Table 4.

This time, the result is computed by considering the first fi
terms in the series and is given by 0.090069 with a stand
deviation of 0.01090. This result is slightly better than the pre
ous one. This does indicate that the results are expected to
verge with increase in the number of samples. This particu
example illustrates one particular shortcoming of the bound
walk method. As is generally true for other numerical metho
the boundary walk method is not useful for estimating quanti
whose absolute values are close to zero in magnitude, with
using a considerable number of sample points. This observa
was also verified by solving the Dirichlet problem on an ellip
with b/a52 with the exact solution

u~x,y!5exp~x!cos~y!21

for points close to the origin.

Table 5 Solution of a Neumann problem on an ellipse with a
Ä1, bÄ2 at uÄpÕ4

r k
Computed

Value Std. Dev
Exact
Value % Error

0.2 5 1.10627 0.01336 1.10614 0.011
0.4 5 1.11961 0.01458 1.12019 0.052
0.6 5 1.00616 0.01778 1.01045 0.425
0.8 7 0.74907 0.03006 0.74902 0.007

Monte Carlo simulation parameters:N5400,000,n58, s50.005,e50.005
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5.1.2 Neumann Problems.The boundary walk method is
used to solve the Neumann problem on an ellipse withb/a52
andb/a55. Since the results are unique upto an additive const
the gradient of the field variable in thex-direction is calculated.
Another approach would be to fix the field variable at one inter
point in the domain, apply the Kelvin transformation, and so
the resulting exterior Dirichlet problem~see Atkinson@20#!. This
will be tried in the future.

The following exact solution is assumed:

u~x,y!5exp~x!cos~y!

Fig. 5 Wedge-shaped region for the displacement problem

Table 6 Solution of a Neumann problem on an ellipse with a
Ä1, bÄ5 at uÄpÕ4

r k
Computed

Value Std. Dev
Exact
Value % Error

0.2 7 0.88654 0.02460 0.87573 1.234
0.4 7 0.20776 0.02471 0.20692 0.406
0.6 7 20.80706 0.03232 20.79959 0.934
0.8 7 21.67133 0.05128 21.67502 0.220

Monte Carlo simulation parameters:N51,000,000,n510, s50.01,e50.01

Table 7 Solution of a displacement problem on an ellipse with
aÄ1, bÄ2 at uÄpÕ4

r k
Computed

Value Std. Dev
Exact
Value % Error

0.2 u 7 0.03588 0.00416 0.03807 5.752
v 8 0.08169 0.00560 0.07615 7.275

0.4 u 7 0.07195 0.00413 0.07615 5.510
v 8 0.15751 0.00558 0.15230 3.420

0.6 u 10 0.11349 0.00704 0.11422 0.391
v 9 0.23477 0.00658 0.22845 2.766

0.8 u 10 0.15128 0.00694 0.15230 0.670
v 9 0.31048 0.00653 0.30460 1.930

Monte Carlo simulation parameters:N51,200,000,n512, s50.0010,e50.0015
MAY 2003, Vol. 70 Õ 415
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Table 8 Solution of a displacement problem on a wedge with fÄpÕ4 and LÄ1

f0 f1 f2 f3 f4 f5

Computed
Mean (u)

0.15906 20.02256 0.00333 20.00260 20.00088 0.00024

Std.
Dev

0.00028 0.00037 0.00038 0.00041 0.00044 0.0004

Computed
Mean (v)

20.00016 0.00004 0.00011 0.00018 20.00040 20.00018

Std.
Dev

0.00015 0.00026 0.00029 0.00034 0.00038 0.0004

Monte Carlo simulation parameters:N5200,000,n58, s50.0010,e50.0010
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and the corresponding Neumann boundary conditions are imp
on the boundary of the body. Results for the ellipseb/a52 are
presented in the Table 5.

As seen from Table 5, the number of samples needed to a
the required tolerance is more than for the corresponding Diric
problem with the same geometry. The number of terms neede
compute the solution is also more. Both of these effects could
attributed to the fact that the boundary conditions for this N
mann problem are more complicated.

The results for the Neumann problem for an ellipse withb/a
55 with the same exact solution are presented in Table 6.

As seen from Table 6, the number of samples needed to ach
the required tolerance, which was relaxed in this case, is a
two and half times the number required withb/a52. This can
again be attributed to the elongated shape of the ellipse
b/a55 which leads to nonuniform sampling from the bounda

5.2 Linear Elasticity

5.2.1 Displacement Problems.The boundary walk method is
used to solve displacement prescribed problems on a thin el
and on a wedge. For both these problems, displacement boun
conditions corresponding to unit normal boundary traction are
plied. The Poisson’s ratio,n, is assumed to be 0.3 and the she
modulus,m, is assumed to be 1.0. The exact solution assum
u(0,0)50 andv(0,0)50 is given by

u5
~12n!

2m~11n!
x

v5
~12n!

2m~11n!
y.

The results on an ellipse withb/a52 are presented in Table 7.
It is seen from Table 7 that more terms are needed as the p

of interest approaches the boundary. It also confirms the prev

Fig. 6 Problem definition for the traction prescribed problem
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observation that the boundary walk method is not quite accurat
estimating quantities whose absolute magnitude is ‘‘small.’’

The boundary walk method is also used to solve the displa
ment problem on a wedge shaped region. The purpose of
problem is to demonstrate the applicability of the derived eq
tions to solve problems on domains-with non-smooth boundar
The wedge is as shown in Fig. 5.

The two sides meeting at the origin are straight line segme
with included anglef and are tangent to the circle with cent
(L,0). Displacements corresponding to unit normal tractions
applied on the boundary. Results of the problem withf5p/4 and
L51 at

x5r cos~u!

y5r sin~u!

for r 50.5 andu50, are presented next in Table 8.
Heref0 , . . . ,f5 are the first six terms in series~35!. Accord-

ing to the tolerance criteria, the first four terms are taken to co
pute the displacement in thex-direction. The computed displace
ment is 0.13724 with a standard deviation of 0.00144. T
compares well with the actual result which is 0.13462. To cal
late the displacement in they-direction, only the first term is
taken. The exact answer is of course 0.0.

5.2.2 Traction Problems. The boundary walk method is use
to solve a traction problem on an ellipse. Unit normal traction
applied on portionsS1 and S2 of the boundary whereS1
5$x,y:p/4<u<3/4p,x,yPG% and S25$x,y:5/4p<u
<7/4p,x,yPG%. ~Please refer to Fig. 6.!

The solutions obtained using the boundary walk meth
~BWM! are compared with those obtained using the stand
boundary element method~BEM! with linear continuous ele-
ments. The results on an ellipse withb/a52 are presented in
Table 9. It is seen that the results are quite accurate. Note tha
largest stresses~in absolute magnitude! are estimated well in all
the four points under consideration while a large difference

Table 9 Solution of a traction problem on an ellipse with a
Ä1, bÄ2 at uÄpÕ4

r k
Computed
~BWM! Std. Dev

Computed
~BEM! % Difference

0.2 sxx 4 20.12643 0.00383 20.12207 3.572
syy 4 0.84200 0.00479 0.84320 0.142
sxy 2 20.01762 0.00083 20.01651 6.723

0.4 sxx 4 20.09576 0.00421 20.08726 9.741
syy 4 0.85596 0.00522 0.85403 0.226
sxy 3 20.05833 0.00185 20.06000 2.783

0.6 sxx 5 20.02090 0.00816 20.02379 12.148
syy 5 0.86272 0.00974 0.85299 1.141
sxy 3 20.10674 0.00209 20.11000 2.964

0.8 sxx 5 0.07039 0.01155 0.05424 29.775
syy 5 0.85088 0.01370 0.83576 1.809
sxy 3 20.13214 0.00267 20.13829 4.447

Monte Carlo simulation parameters:N51,200,000,n57, s50.0050,e50.0050
Transactions of the ASME
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tween the boundary element method and boundary walk me
results is observed when estimating the smallest stress~in absolute
magnitude!. For example, the percentage difference betweensxx
computed atr 50.8 using the boundary element method and
boundary walk method is around 30%. But this stress is of
order of 10% of the maximum stress (syy). Inaccurate estimation
of minor stress components can occur from other numerical m
ods as well, but is of little practical concern as long as the ma
components are obtained accurately.

Remarks.

• The computational time~wall clock! for solving the above
problems~potential theory and linear elasticity! is of the or-
der of few minutes on a machine with a Pentium 3 proces
~650 Mhz! and having 256 Mb of RAM.

• Large sample sizes are required for several examples in
paper in order to estimate ‘‘small’’ quantities with the pr
scribed tolerance.

6 Concluding Remarks
A local method called the boundary walk method has been

scribed and applied to solve two-dimensional problems in po
tial theory and linear elasticity. The method is local in the se
that the solution at a point of interest is obtained directly. T
necessary integral representations needed to apply the boun
walk method are also presented. Simple problems are solved u
the boundary walk method to show the feasibility the method. T
numerical results are in reasonable agreement with the exac
lutions. To further develop this method and improve its efficien
and accuracy, the following issues will be investigated in the n
future:

~a! Develop the method to solve problems with mixed boun
ary conditions.

~b! Apply the method to solve problems in multiply connect
domains.

~c! Get accurate error estimates which depend on the num
of terms considered in the series and the number of sam
used to compute the integrals.

~d! Develop more efficient ways of carrying out Monte Car
integration.

The versatility of the boundary walk method in its current sta
is definitely not comparable to common numerical methods
the finite element method or the boundary element method.
addressing some or all of these issues mentioned above will
in improving its range of applicability.
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On the Eshelby’s Inclusion
Problem for Ellipsoids With
Nonuniform Dilatational Gaussian
and Exponential Eigenstrains
This work investigates the three-dimensional elastic state of inclusions in which the
scribed stress-free transformation strains or eigenstrains are spatially nonuniform
distributed either in a Gaussian, or an exponential manner. The prescribed eigens
distributions are taken to be dilatational. Typical research in the micromechanic
inclusions and inhomogeneities has dealt, by and large, with spatially uniform ei
strains and, to some limited degree, with polynomial distributions. Solutions to Eshe
inclusion problem, where eigenstrains are Gaussian and exponential in nature, do
exist. Such eigenstrain distributions arise naturally due to highly localized point-so
type heating (typical in electronic chips), due to compositional differences, and thos
to diffusion related mechanisms among others. The current paper provides such a so
for ellipsoidal shaped inclusions located in an infinite isotropic elastic matrix. It is sho
similar to the much-discussed uniform eigenstrain problem, that the elastic state is
pletely determined in closed form save for some simple one-dimensional integrals th
evaluated trivially using numerical quadrature. For the specialized case of a sphe
shape, solutions in terms of known functions are derived and numerical results are
sented. The elastic state both within and outside the inclusion is investigated. Fo
specific case of a sphere, the elastic strain energies are given in terms of simple form
Some applications of the current work in various areas such as electronics, microme
ics of composites, and material science are also discussed.@DOI: 10.1115/1.1558078#
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1 Introduction
Since the celebrated work of Eshelby@1–3# on the elastic state

of inclusions and inhomogeneities, extensive work on this sub
has appeared in various forms. Following Mura@4#, we define an
inclusion to be a bounded volume located in a material with id
tical material properties but containing a finite stress-free trans
mation strain~or eigenstrain! within its domain. The value of the
eigenstrain is null outside the inclusion domain. An inhomoge
ity is defined as a bounded volume with material properties
ferent than those of the surrounding material or matrix. Vario
examples of naturally occurring eigenstrains are those due to
mal expansion, lattice parameter mismatch, inelastic deforma
swelling strain, compositional differences, magnetomechanica
electromechanical strains, etc.

The following monographs have provided comprehensive
views of the micromechanics of inclusions and related proble
Mura @4#, Nemat-Nasser and Hori@5#, and Markov and Prezios
@6#. Some other collections of work include: Weng et al.@7# and
Bilby et al. @8#. The review articles by Mura et al.@9# and Mura
@10# also provide a good overview along with some more rec
references. In view of the existence of these detailed reviews
elaborate survey of eigenstrain or inclusion problems is red
dant. However, to establish context, some limited and relev
literature is discussed below.

A somewhat limited amount of analytical work on nonunifor
eigenstrains has focused on polynomial distributions. Sende

1To whom correspondence should be addressed. e-mail: sharma@crd.ge.co
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan.
2002; final revision, Sept. 27, 2002. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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@11# first considered the problem of polynomial distributions
eigenstrains. His work was extended by Moschovidis@12# and
Moschovidis and Mura@13#. In particular, polynomial distribu-
tions of eigenstrains were found to be useful in dealing with
elastic interactions between inhomogeneities,@13–14#, and more
recently by Shodja and Sarvestani@15# to tackle the coated inho
mogeneity problem. Rodin and Hwang@16# provide an excellent
discussion on the use of polynomial distributions of eigenstra
in the solution of interaction problems of inhomogeneities. Po
nomial eigenstrains in anisotropic materials were investigated
Asaro and Barnett@17# and Mura and Kinoshita@18#.

Apart from the aforementioned works, several other contrib
tors have extended Eshelby’s original work on inclusions and
homogeneities. Furuhashi et al.@19#, Ru and Schiavone@20#, and
Zhong and Meguid@21#, among others have considered slippin
inclusions where the matrix-inclusion bonding is imperfect.
particular technological interests are coated inclusions, wh
have been studied by Walpole@22# who presents a simple approx
mate model for infinitesimally thin coatings. His work is extend
and refined by others such as Weng et al.@23#, Cherkaoui et al.
@24#, and others. Ru@25# has focused on providing solution fo
inclusions of arbitrary shape. Solutions to inclusion proble
have also been extended to piezoelectric medium; e.g., Taya@26#,
Ru @27#, Deng and Meguid@28#, and Mikata@29# are some recen
references. Chiu@30# provided the solution to the problem of
parallelepiped inclusion containing uniform eigenstrains, while
cently Nozaki and Taya@31# have solved the more general pro
lem of a polyhedral inclusion with uniform eigenstrains. Oth
contributions abound in this active area of research which b
relevance and brevity considerations preclude us from citing.

Presently, no semianalytical or analytical solutions to the n
uniform eigenstrain problem exist~where the distribution is not of
polynomial nature!. The polynomial distribution~as evidenced by
expressions provided by Moschovidis@12# and noted by Rodin
and Hwang@16#! is extremely tedious to implement even for
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second degree polynomial and thus, practically speaking, prov
only a limited departure from the uniformly eigenstrained inc
sion problem. On the other hand, several problems in the phy
and mechanics of materials naturally give rise to eigenstrain
tributions which are Gaussian and exponential in nature. The o
dimensional equivalent of these distributions can be expres
parametrically~in terms of a varying parametert and constantr!
as

Gaussian:re2t2 (1a)

Exponential: re2t (1b)

In this article, we endeavor to provide both the interior and ex
rior solution to the elastic state of ellipsoidal inclusions with p
scribed Gaussian or exponential dilatational eigenstrains, w
the parametert in Equations~1a–b! represents an arbitrary dis
tance within the ellipsoidal inclusion with respect to the centr
of the inclusion domain.

The solution is reduced to a point where only a trivial nume
cal evaluation of a one-dimensional integral is required for
general ellipsoid~much like the case for the classic uniform eige
strain problem where numerical evaluation of elliptic integrals
required!. However, for the specialized case of a sphere, a co
pletely closed-form solution~expressible in terms of known math
ematical functions! is derived and numerical results are presen
for the physically meaningful dilatational case. The elastic str
energy of the spherical inclusion is evaluated and reduced
simple formulas involving one-dimensional integrals.

Several applications are foreseen for this work:

1. Electronic chips, in particular various kinds of FETs~e.g.,
MESFETs!, are characterized by extremely localized point-sou
type transient heating. Thus, temperature at some source poin~of
power generation! is a maximum and falls of very rapidly in al
directions. Such a nonuniform temperature distribution leads
thermal eigenstrains distributed in a Gaussian or exponential f
ion. The localized mechanical deformation of electronic structu
can have a significant influence on the electronic properties
recent paper by Johnson and Freund@32# is a useful reference on
the effect of mechanical strain on the electronic properties
semiconducting materials. Knowledge of the elastic state by it
is also desirable to assess propensity of the electronic structu
mechanical damage.

2. Eigenstrains can often arise due to diffusion of materi
compositional changes, etc. Such eigenstrains obey the diffu
differential equation often leading to Gaussian or in some ca
exponential distributions.

3. Applications are also envisaged in transient problems wh
the final eigenstrain is uniform, but the transient state is nonu
form and can be approximated by exponential eigenstrain di
butions.

4. Both the exponential and Gaussian distributions are v
versatile in the sense that by introducing the controlling constak
in the exponents~see Section 2, Eqs.~5a–d!, one can tailor these
distributions to mimic a variety of nonuniform distribution
Needless to say, several mathematical functions can be expre
as linear combination of the exponential function and thus
solution to the exponentially distributed eigenstrain automatic
provides a solution to a whole class of eigenstrain distribution

In Section 2, Eshelby’s formalism is revisited and briefly r
viewed. The central problem is formulated. The solution for
general ellipsoid is discussed in Section 3 while a speciali
closed-form derivation is made for a spherical inclusion in Sect
4. Numerical results for the spherical inclusion are also prese
and discussed. A short note on the calculation of the elastic s
energy of a spherical inclusion with Gaussian/exponential eig
strain is provided in Section 5, followed by closing remarks
Section 6.
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2 Problem Formulation
In this section only a concise description of Eshelby’s form

ism is given and thereafter the problem central to this pape
formulated. Both boldfaced and index notation will be used.

Consider an infinite linear elastic material,D, defined by the
fourth-order elasticity tensorC, containing an inclusion~V! with a
prescribed eigenstrain«* , not necessarily uniform~Fig. 1!.
Eshelby showed that the constrained strain or final strain could
expressed in integral form as follows,@1,2,4#:

« i j
c ~x!52

1

2 EV
Cklmn«mn* ~x!@Gik,l j ~x,x8!1Gjk,l i ~x,x8!#dx8

(2)

Here,Gi j (x,x8) is the fundamental solution to the Kelvin’s prob
lem of a point load in an infinite solid. It is given by~for isotropic
materials!:

Gi j ~x,x8!5
1

16pm~12n!ux2x8u

3F ~324n!d i j 1
~xi2xi8!~xj2xj8!

ux2x8u2 G (3)

Here,m is the shear modulus,n is the Poisson’s ratio andd i j is the
Kronecker’s delta. For uniform eigenstrains in ellipsoids, the
sulting constrained strain~Eq. ~2!! is also uniform and can be
related to the eigenstrain via the famous Eshelby tensor:

« i j
c 5Si jkl ~n,ai /aj !« i j* . (4)

Equation~4! was one of the most important results of Eshelb
original work, @1#. Eshelby’s tensor is only a function of the ma
trix Poisson’s ratio and the ellipsoidal aspect ratios (ai /aj ). The
various components of Eshelby’s tensor are well documented
Mura @4# for the general ellipsoid, for various specific subsets
the ellipsoid~i.e., elliptic cylinder, flat ellipsoid, etc.!, as well as
other shapes such as the parallelepiped.

Having established appropriate context, we formulate our pr
lem as follows: Consider an ellipsoidal inclusion,V, perfectly
bonded to the infinite matrix~D! in which it is located~Fig. 1!.
Then we seek the constrained strain and hence the complete s
state, both inside and outside the inclusion domain, given the
lowing eigenstrain distributions:

Ellipsoidal Domain H V:
xpxp

aP
<1J

Gaussian:« i j* ~x!5« i j
0 e2k2~xpxp /aP

2 ! xPV (5a)

50 x¹V (5b)

Fig. 1 An inclusion V confined in an infinite linear elastic me-
dium D. The origin of the coordinate system is at the center of
the inclusion.
MAY 2003, Vol. 70 Õ 419



420 Õ Vol. 70, MAY
Fig. 2 Parametric variation of Gaussian eigenstrains as a function of k along a
radial axis of a spherical inclusion
.
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Exponential: « i j* ~x!5« i j
0 e2~kAxpxp /aP

2 ! xPV (5c)

50 x¹V (5d)

We will consider only the case of dilatational eigenstrains, i
« i j* 5«0d i j . Here,ai , are the semiaxes of the ellipsoid and co
ventional summation rules apply unless otherwise noted. A
peated index in uppercase is not summed but takes on the
value as it lowercase counterpart. To clarify the notation, the
ponent in the Gaussian distribution is written explicitly as:x1

2/a1
2

1x2
2/a2

21x3
2/a3

2. In the specific case of a sphere, both distrib
tions depend only on the radial distance from the center of
inclusion. «0, is simply a normalizing space-independent stra
tensor. The parameter,k, not present in the earlier definition~Eqs.
~1a,b! has been introduced to generalize the distributions furt
As an illustration the spatial variation of the Gaussian distribut
along thex1-axis of the sphere is shown in Fig. 2~although, in the
highly symmeterized case of a sphere, the distribution is ident
along all diametrical directions!. The reader will note that ask
→0, we approach the uniform eigenstrain problem. This f
should serve as a check on our results.

3 General Solution for Ellipsoids With Dilatational
Eigenstrains

In this section, the general solution for ellipsoids is presen
for the case when the eigenstrains are dilatational. Most
quently, the naturally occurring and physically meaningful eige
strains~such as those due to thermal, diffusional, or compositio
gradients, etc.! are dilatational in nature.

Using Eq.~3! in Eq. ~2! one can obtain the final solution as,@1#,

« i j
c ~x!5

1

8p~12v !
@Ckl,kli j 22vFkk,i j 22~12v !~F ik,k j

1F jk,ki!#. (6)

Here, c and F are biharmonic and harmonic potentials of t
ellipsoid. They are given as
2003
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n-
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ct

ted
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e

C i j ~x!5E
V

ux2x8u« i j* ~x8!dx8 (7)

F i j ~x!5E
V

1

ux2x8u
« i j* ~x8!dx8. (8)

Generally, an assumption of uniformity of the eigenstrain,«* ,
is made,@4#, and is taken outside the integrals in Eqs.~7!, ~8!, thus
reducing the problem of finding the elastic state of the inclusion
the evaluation of harmonic and biharmonic potentials of the inc
sion shape. For the ellipsoidal inclusion with uniform eigenstrai
the final result is embodied in Eq.~4!.

For the dilatational case~where the tensor«0 in Eqs.~5a,b! is
replaced by«0d i j ), we can modify Eq.~6! to be written as

« i j
c ~x!52

11v
4p~12v !

«0F ,i j . (9)

This follows directly from the general relations between the h
monic and biharmonic potentials,@33–35#,

C i j ,kk~x!52F i j ~x!
(10)

C i j ,kkll~x!52F i j ,l l ~x!528p« i j* ~x!

for xPV

50 for x¹V.

The yet unknown harmonic potential term~in Eq. ~8!! can be
written explicitly as

Gaussian:F ,i j ~x!5
]

]xi

]

]xj
E E E

V

e2k2~xm8 xm8 /aM
2 !

ux2x8u
dx8

(11a)

Exponential: F ,i j ~x!5
]

]xj

]

]xj
E E E

V

e2kA~xm8 xm8 /aM
2 !

ux2x8u
dx8.

(11b)
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At this point we appeal to a generalized theorem proven
Chandrasekhar@35# and presented in a slightly different form b
Neutsch@36# to reduce Eqs.~11a,b! to simpler integrals. Details
of the theorem, its application to our case and the detailed der
tion are recorded in Appendix A. But first, the differentiation
carried out within the integral itself~Appendix A!. Upon reduction
of the integrals, the final results obtained are~Appendix A!

Gaussian:F ,i j ~x!52pa1a2a3@~2k2G1!xixj2G2d i j #
(12a)

Exponential: F ,i j ~x!52pa1a2a3@~kE1!xixj2E2d i j #.
(12b)

Here,$G1 ,G2% and$E1 ,E2% will be called theG and theE inte-
grals, respectively, and are expressed as

G15E
l

`S 1

aM
2 1sD e2k2~xmxm /aM

2 !

A~a1
21s!~a2

21s!~a3
21s!

ds (13a)

G25E
l

`S 1

aM
2 1sD e2k2~xmxm /aM

2 !

A~a1
21s!~a2

21s!~a3
21s!

ds (13b)

E15E
l

` k

Axmxm

aM
2

S 1

aM
2 1s

D 2 e2kAxmxm /aM
2

A~a1
21s!~a2

21s!~a3
21s!

ds

(13c)

E25E
l

`S 1

aM
2 1sD e2kAxmxm /aM

2

A~a1
21s!~a2

21s!~a3
21s!

ds. (13d)

The factorl is ubiquitous in ellipsoid potential-related problem
~e.g.,@31#! and is defined as

l50 xPV (14a)

H l.0U12
xixi

ai
21l

50J x¹V. (14b)

We note in passing that a consequence of Eq.~12a,b! is the
presence of a deviatoric component in the second derivative o
harmonic potential. Therefore, even a purely dilating inclus
will experience~as intuitive! constrained shear strains in certa
directions; an effect not seen in the solution to uniformly dilati
inclusion problem,@1#.

Obviously, the solution to this fairly complicated problem
now simply reduced to the evaluation of the one-dimensionaE
andG integrals. This is similar to the classic uniform eigenstra
problem where the final solution is reduced to the evaluation
certain elliptic integrals. For the general ellipsoid, theE and G
integrals andl have to be evaluated numerically, although, th
simple form makes it trivial~especially in typical mathematica
packages such as MATHEMATICA and MATLAB!. For the spe-
cific case of a sphere, further reduction is possible and is tac
in the next section. It should be noted that theE andG integrals
depend onl and hence, Eqs.~12!–~14! compactly represent the
solution to the elastic state both in the interior and the exterio
the ellipsoidal inclusion.

4 Closed-Form Solution for a Sphere
In this section, our results are specialized for the spher

shape, which permits simple closed-form expressions in term
known mathematical functions. Further details are in Appendix
but the final results are quoted as follows:

xPV:

G15
g~5/2,k2r 2/a2!

k5r 5 , (15a)
Journal of Applied Mechanics
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G25
g~3/2,k2r 2/a2!

k3r 3 , (15b)

E15
2g~4,kr/a!

k4r 5 , (15c)

E25
2g~3,kr/a!

k3r 3 , (15d)

x¹V:

G15
g~5/2,k2!

k5r 5 , (15e)

G25
g~3/2,k2!

k3r 3 , (15f)

E15
2g~4,k!

k4r 5 , (15g)

E25
2g~3,k!

k3r 3 (15h)

The function,g(n,x) is the incomplete gamma function ofx of
ordern. At a very quick glance, it may erroneously appear that
interior E and G integrals are singular at the origin; however,
closer look will indicate that asr→0, these integrals steadily ap
proach a constant value~as will be indicated in the numerica
results, Figs. 3–6!.

The stress-field due to the inclusion is given by

s i j ~x!5Ci jkl @« i j
c ~x!2« i j* ~x!#, xPV

(16)

Ci jkl « i j
c ~x!, x¹V

As an illustration, numerical results for the stress compone
along thex1-axis are presented in Fig. 3 for the Gaussian dis
bution (k51). In what follows the Poisson ratio for the matrix
taken to ben50.3. The stresses have been normalized with
spect to the product of matrix Young’s modulus,E, and the mag-
nitude of the dilatational eigenstrain,«0. Unlike the classical case
of uniform eigenstrain problem, the interior stress state is nonu
form. As expected, there is a discontinuity in the normal str
components across the inclusion-matrix interface, adequately
tured by our solution since exterior solutions is explicitly i
cluded. Along thex1-axis, the shear stresses are zero. Also, o
side the inclusion, the stress components asymptotically de
thus satisfying the zero traction boundary conditions at infinity
the inclusion problem.

Figure 4 plots the variation of the stress components along
line x15x2 , x350. In this instance, there is a nonzero shear str
s12, which vanishes at the center of the inclusion~due to the
spherical symmetry of the eigenstrain distribution! and at infinity.
Note that the continuity ofs12 across the inclusion boundary is
consequence of the dilatational nature of the prescribed eig
strains; an eigenstrain distribution with a deviatoric compon
will cause a jump in the shear stresses at the inclusion bound

In the limit of k→0 ~corresponding to a homogeneous dist
bution of eigenstrain in the inclusion!, the results in Figs. 3 and 4
collapse into a single curve~Fig. 5!, and we recover Eshelby’s
classical solution to the inclusion problem for a sphere. This c
stitutes a useful validation of our results. We further explore
asymptotic limit of our solution in Fig. 6, where the stress co
ponents11 for various values ofk is shown. For small values ofk
the eigenstrain is nearly uniform and the classical uniform eig
strain solution is recovered. This is rather interesting since
expressions~in terms of the incomplete gamma function! are of
completely different form than those derived by Eshelby@1# and
Mura @4#. Nevertheless, our expressions are equivalent to th
presented by Eshelby-Mura for the uniform eigenstrain case~as
MAY 2003, Vol. 70 Õ 421
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Fig. 3 Nonzero components of the stress tensor along the x 1-axis of a spherical
inclusion loaded with dilatational Gaussian eigenstrains „kÄ1…
nal
-

es-
k→0). Thus, in addition to solving the nonuniform Gaussia
exponential eigenstrain problem, we have also recovered a n
form of a pre-existing classical solution.

5 Elastic Strain Energy of a Sphere With GaussianÕ
Exponential Eigenstrains

For the general case of an ellipsoidal inclusion, evaluation
the elastic strain energy can only proceed numerically, althou
2003
n/
ovel

of
gh,

the reduction of the overall problem to simple one-dimensio
integrals~Eqs. ~13a–d!! makes such a calculation simple. How
ever, for the case of a spherical inclusion, fairly simple expr
sions can be derived and are presented in this section.

The elastic strain energy can be written as

W5
1

2 E E E
D

s i j ~x!@« i j
c ~x!2« i j* ~x!#dD. (17)
Fig. 4 Nonzero components of the stress tensor along the line defined by x 1
Äx 2 , x 3Ä0 of a spherical inclusion loaded with dilatational Gaussian eigenstrains
„kÄ1…
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Fig. 5 Components of the stress tensor along the x 1-axis or a line defined by
x 1Äx 2 , x 3Ä0 of a spherical inclusion loaded with either dilatational Gaussian
eigenstrains or dilatational exponential eigenstrains in the limit of k\0 „Eshelby’s
classical solution …
as
Integrating by parts, incorporating the equilibrium conditions, a
setting the tractions zero at the boundary of the bodyD, Eq. ~17!
can be reduced to

W52
1

2 E E E
V

s i j ~x!« i j* ~x!dV. (18)
chanics
ndAfter some tedious algebra we can write the final expressions

Gaussian:Wg53K«0@W1
g23«0W2

g# (19a)

Exponential: We53K«0@W1
e23«0W2

e# (19b)

Here,K is the bulk modulus and the ‘‘W quantities’’ are expressed
as
Fig. 6 Interior solution for s11 along the x 1-axis of a spherical inclusion, as a
function of k , due to Gaussian eigenstrains
MAY 2003, Vol. 70 Õ 423
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W1
g52

2p~11n!

3~12n!
«0S a

kr D
3

3H E
0

aF2gS 5

2
,
k2r 2

a2 D23gS 3

2
,
k2r 2

a2 D Ge2k2r 2/a2
drJ

(20a)

W2
g5

pa3g~3/2,2k2!

k3A2
(20b)

W1
e52

4p~11n!

3~12n!
«0S a

kr D
3

3H E
0

aFgS 4,
kr

a D23gS 3,
kr

a D Ge2kr/adrJ (20c)

W2
e5

pa3g~3,2k!

2k3 . (20d)

6 Closing Remarks
In the present work, the elastic state of inclusions undergo

dilatational nonuniform Gaussian and exponential eigenstr
was solved. Interior and exterior elastic solutions for the gen
ellipsoid were reduced to simple one-dimensional integrals an
gous to the classical uniform eigenstrain problem. Specific clos
form solutions to the elastic state were presented for a sphe
inclusion together with an expression for the elastic strain ene
To the best of the authors’ knowledge, such solutions appea
the first time.

The present work directly allows the solution to several pra
cal problems, namely, nonuniform heating, diffusion related a
transient problems where the transient distributions are non
form, etc. Further, using the controlling parameter,k, a variety of
nonuniformity can be introduced. In the limit,k→0, the classical
uniform eigenstrain solution is recovered.

Within the boundaries of the posed problem, our solution
exact, however, the present work has two main restrictive
tures: ~i! The eigenstrains are of dilatational nature. Insofar
inclusion problems are concerned~as opposed to inhomogeneit
problems!, there are several sources of eigenstrains that are
dominantly dilatational~e.g., thermal strains, swelling strain
etc.!. However, future work is anticipated where this restriction
removed. Such an effort will entail the calculation of the biha
mic potential over an ellipsoidal volume for given nonunifor
eigenstrains.~ii ! We considered two main types of spatial dist
butions: Gaussian and exponential. In both cases, the spatial v
tion is based solely upon the absolute distance from the ce
~i.e., there is no angular variation!. Again, for many naturally
occurring eigenstrains, such a restriction does not seem to be
reasonable.

Appendix A

Derivation of Eqs. „12a,b… and „13a,b…. The Newtonian har-
monic potential of a mass with density,r is simply

F~x!5E
V

r~x8!

ux2x8u
dx8. (21)

For homogeneous ellipsoids, Eq.~21! reduces to the classical un
form harmonic potential and was used by Eshelby@1# in his cel-
ebrated work. The harmonic potential for uniform density is w
documented by several monographs on the potential theory~e.g.,
@33,36,37#!. For nonuniform distributions, a particularly elega
result is that derived by Dyson@35#: If the density of the ellipsoid
is given by
424 Õ Vol. 70, MAY 2003
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r~x!5
m

a1a2a3
S 12

xixi

aI
2 D m21

f S x1

a1
,
x2

a2
,
x3

a3
D , m.0, (22)

the Newtonian potential then is expressed as

F~x!5E
l

`S 12
xixi

aI
21sD m

(
n50

` snS 12
xixi

aI
21sD n

22nn! ~n1m!!/m!

3H aI
21s

aI
2

]

]xi

]

]xi
J n

f S a1x1

a1
21s

,
a2x2

a2
21s

,
a3x3

a3
21sD ds

D
(23)

D5
1

A~a1
21s!~a2

21s!~a3
21s!

.

For the specialized case where the density depends only on
absolute distance from the centroid of the ellipsoid, it can
shown using either Chandarsekhar@33# or Neutsch@34# that Eq.
~23! reduces to

F~x!5pa1a2a3E
l

`F *
xixi /~ai

2
1s!

`
rS t5

xixi

aI
2 D dt

D
Gds. (24)

The interior integral in Eq.~24! is straightforward to evaluate
for the Gaussian and exponential distributions. Simple twi
differentiation within the integral sign leads directly to Eq
~12a–b! and ~13a–d!.

Appendix B

Derivation of Eqs. „15a–h…. Using, a15a25a35a, the E
andG integrals can be expressed as

G15E
l

` e2k2r 2/~a21s!

~a21s!7/2 ds, (25a)

G25E
l

` e2k2r 2/~a21s!

~a21s!5/2 ds (25b)

E15E
l

` 1

r

e2kr/Aa21s

~a21s!3 ds, (25c)

E25E
l

` e2kr/Aa21s

~a21s!5/2 ds. (25d)

Here r is the radial distance from the center of the sphere, i
xixi . Using Gradshteyn et al.@38# and the fact that for a sphere
the cubic equation in Eq.~14b! yields,l5r 22a2 in the exterior,
one can easily recover Eqs.~15a–h!.
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1 Introduction
In recent years there has been a resurgence of interest in p

electricity, motivated by advances in smart structures technol
Classic reference works on the subject include those of Tier
@1#, Berlincourt @2#, Berlincourt et al.@3#, and Jaffe et al.@4#.
While @1# is primarily concerned with waves and oscillations, th
book also contains a concise summary of the basic equation
static and dynamic linear piezoelectricity. The piezoelectric p
nomenon has been exploited for decades. Classic piezoele
devices include microphones and record players. More recen
plications have focussed on improving existing devices and tra
forming them into ‘‘smart structures.’’ For example, piezoelect
actuatorscan be used to modify the shape of an airfoil, there
reducing transverse vortices,@5#, or to maintain proper tension
with overhead electrical wires on a locomotive pantograph,@6#. In
addition to being used as actuators, which respond to chang
an electric field by producing mechanical strain, they can also
used assensors, which respond to a mechanical strain by produ
ing an electrical signal. One notable civil engineering applicat
of piezoelectric sensors is in structural health monitoring,@7#. A
change in the level of strain will produce an electric charge a
trigger sensors in the structure.

Piezoelectric polycrystalline materials are manufactu
through a process of poling, which involves heating to high te
peratures under the influence of an electric field@8#. As a result,
dipoles are reoriented, and point roughly in the poling directi
although their precise arrangement is still somewhat rand
Upon application of a voltage, electric forces cause the dipole
straighten out in the direction of their general inclination, whi
causes mechanical strain. Anisotropy is essential for the phen
enon to occur.

We are concerned in this paper with special classes of pie

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May
2002; final revision, November 8, 2002. Associate Editor: L. T. Wheeler. Discus
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
426 Õ Vol. 70, MAY 2003 Copyright © 20
ezo-
gy.
ten

is
s of
e-

ctric
ap-
ns-
ic
by

s in
be

c-
on

nd

ed
m-

n,
m.
to

h
om-

zo-

electric materials, namely radially polarized materials. One of
early papers to explore a radially polarized cylindrical mediu
was that of Adelman, Stavsky, and Segal@9#. Like many of their
predecessors, the authors of@9# were interested in the dynami
problem. Some of the issues raised in@9# were further explored in
the book by Parton and Kudryavtsev@10#. Recent papers which
treat some static analyses of radially polarized media include@11–
14#. All of these papers use infinite series solutions for the g
erning equations. The present authors have developed an alte
solution technique for such problems in@15#.

Horgan and Baxter@16# formulated an analytic solution tech
nique for the mechanical problem of an infinitely long, hollo
circular cylinder composed of a cylindrically anisotropic homog
neous linearly elastic material and rotating about its axis at c
stant angular velocity. In the present paper, we consider piezoe
tric analogs of the problems investigated in@16#. We consider a
rotating hollow circular cylinder composed of a radially polariz
cylindrically anisotropic piezoelectric material, e.g., PZT-4
BaTiO3 , and subjected to internal pressure, together with a po
tial difference induced by electrodes attached to the inner
outer surfaces of the cylinder. An analytic solution technique
developed for the electromechanical problem, where stresse
produced by the combined effects of rotation internal pressure
voltage difference.

In Section 2, we give a brief summary of the basic constitut
equations for linear piezoelectric solids. In Section 3, these eq
tions are specialized to cylindrical polar coordinates and the
symmetric problem described above is formulated. The govern
equilibrium equations in polar form are shown to reduce to
coupled system of second-order differential equations for the
dial displacement and electric potential field. These differen
equations are solved analytically, and on applying three differ
sets of boundary conditions an analytic solution method
boundary value problems is developed. In Section 4, the st
distributions in the cylinder are discussed in detail for the pie
ceramic PZT-4. In Section 5, we consider the special problem
rotatingsolid cylinder with traction-free surface and zero applie
electric charge. For this problem, explicit closed-form solutio
are obtained. It is shown that stress singularities at the origin

,
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nta
after
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occur for certain piezoelectric materials analogous to those oc
ring in the purely mechanical problem for radially orthotrop
elastic materials.

2 Basic Constitutive Equations
The governing constitutive equations~see, e.g.,@1,2#! for a ho-

mogeneous anisotropic piezoelectric solid can be written as

« i5si j s j1dmiEm , (1)

Dm5dmis i1emk
T Ek , (2)

where the well-known single suffix notation is used for stress
strain, i.e., i , j run from 1:6, m,k run from 1:3, and the usua
summation convention is used. In the above,« i and s j are the
mechanical strain and stress, respectively,si j are the elastic com-
pliances,Dm is the electric displacement vector~also referred to
as the charge density! and Ek the electric field. Thedmi are the
piezoelectric moduli, in units of Coulombs/Newton~C/N!, which
relate the electrical and mechanical effects. Theemk

T denote the
dielectric permittivity constants at constant stress, in units
Farads/meter~F/m!. An alternate, inverted form of the governin
equations~see, e.g.,@2#! is

s i5ci j « j2emiEm , (3)

Dm5emi« i1emk
S Ek . (4)

The dmi have been replaced byemi , which are also piezoelec
tric moduli, whose units are C/m2, and the elastic compliancessi j

have been replaced by elastic stiffnessesci j . The emk
S denote the

dielectric permittivity constants at constant strain. Their units
the same as those ofemk

T but their values are different. We als
note thatEm can be written in terms of the electric potentialf as

E52“f. (5)

In this paper, we will specialize our general analysis to
piezoceramic PZT-4~a lead zirconium titanate!, which is widely
used in smart materials and structures technology~see, e.g.,@7,8#!.

3 Rotating Hollow Circular Cylinder
We consider a hollow circular cylindera<r<b subjected to

axisymmetric mechanical and electrical loading on its lateral s
face ~see Fig. 1!.

The detailed boundary conditions will be given below. The c
inder is rotating about its axis at constant angular velocityv and is
assumed to be sufficiently long so that end effects need no
considered. In cylindrical polar coordinates~see, e.g.,@10#!, the
governing equations, in the absence of body forces, for the
symmetric stress and electric displacement fields are

ds rr

dr
1

1

r
~s rr 2suu!1rdv2r 50, (6)

dDr

dr
1

1

r
Dr50, (7)

where Dr is the radial component of the electric displaceme
vector andrd is the constant material density.

The constitutive Eqs.~3!, ~4! for the piezoelectric materia
when specialized to cylindrically orthotropic materials, polariz
in the radial direction, may be written as~see, e.g.,@10#!

s rr 5c33« r1c13«u2e33Er ,

suu5c13« r1c11«u2e31Er , (8)

Dr5e31«u1e33« r1e33Er .

Since

« r5
dur

dr
, «u5

ur

r
, (9)
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Er52
df

dr
, (10)

whereur(r ) is the radial displacement andf5f(r ) is the electric
potential, we write~8! as

s rr 5c33

dur

dr
1c13

ur

r
1e33

df

dr
, (11)

suu5c13

dur

dr
1c11

ur

r
1e31

df

dr
, (12)

Dr5e31

ur

r
1e33

dur

dr
2e33

df

dr
. (13)

The elastic constants arec33,c13,c11, the piezoelectric con-
stants aree33, e31, and e33 is the dielectric permittivity at con-
stant strain~the superscriptS has been dropped!. A discussion of
the mechanical anisotropy arising in consideration of cylindrica
orthotropic elastic materials may be found in@16#. Such anisot-
ropy arises, for example, in carbon fibers during the manufac
of composites and in the casting of metals.

When ~11!–~13! are used in~6!, ~7!, we obtain

r 2c33

d2u

dr2 1rc33

du

dr
2c11u1r 2e33

d2f

dr2 1r ~e332e31!
df

dr

1rdv3r 350 (14)

and

r 2e33

d2u

dr2 1r ~e331e31!
du

dr
2r 2e33

d2f

dr2 2r e33

df

dr
50, (15)

respectively, where the subscript onu has been dropped for sim
plicity. Equations~14!, ~15! constitute a coupled system of linea
second-order ordinary differential equations foru and f. It is
useful to nondimensionalize the equations. This may be acc
plished by dividing~14! by c33 and ~15! by e33. Then, if we set

c11

c33
5a, (16)

Fig. 1 Hollow circular cylinder subject to uniform internal
pressure p i and applied voltage V, rotating with constant ve-
locity v
MAY 2003, Vol. 70 Õ 427
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e31

e33
5b, (17)

c33e33

e33
2 5g, (18)

and define a new potential function as

F5
e33

c33
f, (19)

we may write~14!, ~15! as

r 2
d2u

dr2 1r
du

dr
2au1r 2

d2F

dr2 1r ~12b!
dF

dr
1rd

v2r 3

c33
50,

(20)

r 2
d2u

dr2 1r ~11b!
du

dr
2r 2g

d2F

dr2 2rg
dF

dr
50. (21)

The constantsa, b, g are dimensionless parameters. Whilea
depends only on the elastic constants andb on the piezoelectric
constants, the parameterg involves all three of the radial elastic
piezoelectric, and dielectric permittivity constants and thus p
vides a measure of the degree of piezoelectric coupling. As sh
in Horgan and Baxter@16#, the constanta can also be written as

a5
Ēu

Ēr

, (22)

where Ēu ,Ēr denote the Young’s moduli in the azimuthal an
radial directions, respectively. Whena .1, an elastic material is
circumferentially orthotropicand whena ,1, the material isra-
dially orthotropic. In piezoelectric materials, other factors contri
ute to the nature of the orthotropy.

We also nondimensionalize the independent variable. For
hollow cylinder of concern witha<r<b, we set

r5
r

a
, (23)

and

h5
b

a
, (24)

so that 1<r<h. On reevaluating all derivatives using the cha
rule, we rewrite~14!, ~15! as

r2
d2u

dr2 1r
du

dr
2au1r2

d2F

dr2 1r~12b!
dF

dr
1

rdv2

c33
a3r350,

(25)

r2
d2u

dr2 1r~11b!
du

dr
2gr2

d2F

dr2 2gr
dF

dr
50, (26)

whereu5u(r), F5F(r).
It is convenient to define a new dimensionless constant as

V5
rdv2a2

c33
, (27)

which allows us to rewrite~25! as

r2
d2u

dr2 1r
du

dr
2au1r2

d2F

dr2 1r~12b!
dF

dr
1Var350.

(28)

We use the change of variablesr5et to rewrite~28!, ~26! as a
system with constant coefficients. The final coupled system
ordinary differential equations becomes

u92au1F92bF852Vae3t, (29)
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u91bu82gF950, (30)

where the prime denotes differentiation with respect tot.
On writing ~29!, ~30! in differential operator form, one can

readily uncouple this system into a single fourth-order equat
for u or F. In this way, one can obtain the solution pair

u~ t !5
~bv12v1

2!

~v1
22a!

Aev1t1
~bv22v2

2!

~v2
22a!

Bev2t2
b

a
C1aK2e3t,

(31)

F~ t !5Aev1t1Bev2t1Ct1D1aK1e3t, (32)

where

v1,256Ab21ag

11g
. (33)

The constantsK1 ,K2 are given by

K15
V~11

1
3 b!

~b21ag2929g!
, K25

gV

~b21ag2929g!
, (34)

where it is assumed thatb21ag2929gÞ0 andA,B,C,D are
arbitrary constants. From~33! we have

v1
22a5v2

22a5
b22a

11g
(35)

and it is assumed thatb2Þa.
Sincet5 ln r, we have thus established that the solution pair

Eqs.~25!, ~26! can be written as

u5
~bv12v1

2!

~v1
22a!

Arv11
~bv22v2

2!

~v2
22a!

Brv22
b

a
C1aK2r3,

(36)

F5Arv11Brv21C ln r1D1aK1r3. (37)

We also require expressions for the nondimensionalized stres
which we obtain from~11!, ~12!, and~19!. Thus

s rr a

c33
5

du

dr
1d

u

r
1

dF

dr
, (38)

suua

c33
5d

du

dr
1a

u

r
1b

dF

dr
, (39)

where the new dimensionless parameterd is given by

d5
c13

c33
. (40)

Note thatd depends only on theelasticconstants.
On substituting the expressions foru andF from ~36!, ~37! into

~38!, ~39!, we get

s rr

c33
5AFrv121S bv1

21dbv12dv1
22av1

v1
22a D G 1

a

1BFrv221S bv2
21dbv22dv2

22av2

v2
22a D G 1

a

1CFr21S 12
db

a D G 1

a
1r2~3K21dK213K1!, (41)

suu

c33
5AFrv121S dbv1

22dv1
32av1

21bv1
3

v1
22a D G 1

a

1BFrv221S dbv2
22dv2

32av2
21bv2

3

v2
22a D G 1

a
(42)

1r2~3dK21aK213bK1!. (43)
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It is convenient to define a new dimensionless potentialF1 as

F15
F

a
, (44)

and so~37! can be written as

F15A~rv1!
1

a
1B~rv2!

1

a
1C~ ln r!

1

a
1D

1

a
1K1r3. (45)

We will examine three sets of boundary conditions, referred
henceforth as Cases 1, 2, and 3. In Case 1 the cylinder is subje
to a uniform internal pressure, zero electric potential differen
across the cylindrical annulus, and free mechanical boundary
ditions on the outer surface. Thus the rotating tube can be vie
as acting as asensor in this case. In Case 2, we impose fre
mechanical boundary conditions on both internal and external
faces. However, there is a uniform potential difference prescri
across the annulus. Physically, such a state could be achieve
placing electrodes on the inner and outer surfaces of the cylin
@10#. In this case, the rotating tube acts as anactuator. For con-
venience, we will take the potential on the outer surface to
zero, and the potential on the inner surface to be a nonzero
stant. Case 3 is the combined loading case, a superpositio
Cases 1 and 2. The boundary conditions for each case ca
written as follows:

Case 1:
s rr

c33
~1!52pi ,

s rr

c33
~h!50, F1~1!50, F1~h!50,

(46)

Case 2:
s rr

c33
~1!50,

s rr

c33
~h!50, F1~1!5f̄, F1~h!50,

(47)

Case 3:
s rr

c33
~1!52pi ,

s rr

c33
~h!50, F1~1!5f̄, F1~h!50,

(48)

where the constantspi and f̄ are the prescribed dimensionle
pressure and potential, respectively. It is convenient to norma
by takingpi51, f̄51, and so the boundary conditions~46!–~48!
will henceforth be written as

Case 1:
s rr

c33
~1!521,

s rr

c33
~h!50, F1~1!50, F1~h!50,

(49)

Case 2:
s rr

c33
~1!50,

s rr

c33
~h!50, F1~1!51, F1~h!50,

(50)

Case 3:
s rr

c33
~1!521,

s rr

c33
~h!50, F1~1!51, F1~h!50.

(51)

Equations~41! and~45! can each be used to rewrite the boun
ary conditions, one pair at the inner surface of the cylinder a
one at the outer surface. For each of the Cases 1, 2, or 3
system of linear algebraic equations for the constantsA,B,C,D
can be written in the form

Man5bn~n51,2,3! (52)

where the 434 coefficient matrixM is defined in terms of col-
umn vectors

M5@m1 m2 m3 m4#, (53)

where
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m155
bv1

21dbv12dv1
22av1

v1
22a

hv121S bv1
21dbv12dv1

22av1

v1
22a D

1

hv1

6 , (54)

m255
bv2

21dbv22dv2
22av2

v2
22a

hv221S bv2
21dbv22dv2

22av2

v2
22a D

1

hv2

6 , (55)

m355
12

db

a

h21S 12
db

a D
0

ln h

6 , (56)

m45H 0
0
1
1
J . (57)

Each set of boundary conditions determines the form of
column vectorb on the right side in~52!. Thusb1 , b2 , andb3
correspond to Cases 1, 2, and 3, respectively:

b15H 2123K22dK223K1

~23K22dK223K1!h2

2K1

2K1h3
J , (58)

b25H 23K22dK223K1

~23K22dK223K1!h2

12K1

2K1h3
J , (59)

b35H 2123K22dK223K1

~23K22dK223K1!h2

12K1

2K1h3
J , (60)

where we recall from~34!, ~27! that

K15
V~11

1
3 b!

~b21ag2929g!
, (61)

K25
gV

~b21ag2929g!
, (62)

V5
rdv2a2

c33
. (63)

The unknown constantsA,B,C,D can be found using Cramer’
Rule and so

A5
uM1nu
uM u

, B5
uM2nu
uM u

, C5
uM3nu
uM u

, D5
uM4nu
uM u

, (64)

where

M1n5@bn m2 m3 m4#, (65)
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M2n5@m1 bn m3 m4#, (66)

M3n5@m1 m2 bn m4#, (67)

M2n5@m1 m2 m3 bn#. (68)

We remark that on formally settingv50 in the preceding~so
that K150,K250), we recover results for the analogous sta
problems. See Galic and Horgan@15# for a detailed discussion o
the static problem. Because of the algebraic complexity of
problem, further analytic expressions for the constantsA,B,C,D
will not be sought. Rather, we will provide numerical results f
each of the Cases 1, 2, and 3, for the piezoceramic PZT-4.

4 Results for the Piezoceramic PZT-4
We present our numerical results in the form of plots of t

stresses and potential throughout the cylinder. The piezoele
material PZT-4 has been selected because of its technologica

Table 1 Material constants for PZT-4

PZT-4
c33 1153109 Pa
c11 1393109 Pa
c13 74.33109 Pa
e31 25.20 C/m2

e33 15.1 C/m2

e33 5.6231029 F/m

Table 2 Dimensionless parameters

PZT-4
a 1.21
b 20.34
g 2.83
d 0.65
430 Õ Vol. 70, MAY 2003
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portance. The moduli for PZT-4 are given in Table 1~values taken
from @2,3#; see@17# for a convenient table!. On recalling the defi-
nitions of the dimensionless parametersa, b, g, d from ~16!–~18!,
~40!, respectively, we obtain Table 2.

The plots in Figs. 2–4 depict results for each of the three ca
of boundary conditions~49!–~51!, as well as for three differen
aspect ratios,h51.3,2,4. All quantities are plotted versus dime
sionless radiusr defined in~23!. Since 1<r<h, the plot for a
given aspect ratio will terminate at that value ofh. We observe
from ~63! that the rotational termV depends on the density of th
solid rd , the inner radiusa, the prescribed angular velocityv,
and the elastic constantc33. The rotational termV has been nor-
malized toV51 in Figs. 2 through 6.

Radial stress plots for Case 1 boundary conditions are show
the middle subfigure of Fig. 2. The graph for each aspect r
begins ats rr /c33521, then attains an internal maximum and h
value zero at the outer boundary. The graphs forh51.3 andh
52 are nearly identical. In both cases, the internal maximum
a value close to zero, so that the difference between end valu
approximately equal to the difference between the abso
maxima and minima of the graph. Forh54, however, the differ-
ence between absolute maxima and minima is five times gre
than the difference between end values. For large aspect ratios
effect of rotation dominates whereas for small aspect ratios,
predominant effect is that of the internal pressure.

The hoop stresses, shown in the bottom subfigure, are all m
tonically decreasing. Again, the graphs forh51.3 andh52 are
virtually identical. As the aspect ratioh increases toh54, there is
a greater absolute difference between end values than for
lower aspect ratios. The effect of rotation on the tubes with hig
aspect ratios is likewise apparent in the potential distributio
shown in the upper subfigure of Fig. 2. Plots forh51.3 andh
52 exhibit a single internal potential minimum. The graph f
h54 has a double concavity, exhibiting both an internal mi
mum and maximum before returning to its prescribed value
F150 at the outer boundary.

Case 2, shown in Fig. 3, is more interesting. From the low
bottom subfigure, we see that theh51.3 hoop stress has change
Fig. 2 Rotating hollow PZT-4 cylinder: VÄ1. Case 1: plots for stresses and potential for h
Ä1.3, 2, 4 „hÄb Õa….
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Fig. 3 Rotating hollow PZT-4 cylinder: VÄ1. Case 2: plots for stresses and potential for h
Ä1.3, 2, 4 „hÄb Õa….
s

d
a

e of
ina-
s
s

concavity and is nowincreasing from the inner to the outer
boundary. The remaining two hoop stresses are still decrea
This has interesting consequences, which will be further discus
below. The radial stress response, both in shape and magnitu
virtually unchanged from that in Fig. 2. The electric potentials
ed Mechanics
ing.
sed
e, is
re

shown in the upper subfigure of Fig. 3. Forh51.3 andh52, the
potentials decrease almost linearly from their prescribed valu
1 at the inner radius to zero at the outer radius. Careful exam
tion reveals theh52 potential to be slightly concave up. Thi
trend is more apparent in theh54 graph, where the potential ha
Fig. 4 Rotating hollow PZT-4 cylinder: VÄ1. Case 3: plots for stresses and potential for
hÄ1.3, 2, 4 „hÄb Õa….
MAY 2003, Vol. 70 Õ 431
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Fig. 5 Rotating hollow PZT-4 cylinder: VÄ1. Modified Case 2 „F1„0…Ä2…: plots for stresses
and potential for hÄ1.3, 2, 4 „hÄb Õa….
i
n

he
oop

in
s. 2
the double concavity already seen in Fig. 2. As the aspect r
increases, the stress and electric response is increasingly
enced by the rotation, rather than by the specific boundary co
tions applied,

Case 3~Fig. 4! is a superposition of Cases 1 and 2. The plots
AY 2003
atio
nflu-
di-

of

the potential~upper subfigure! resemble those of Case 2, since t
values occurring in Case 2 dominate those of Case 1. The h
stresses~lower subfigure! are monotonically decreasing as
Fig. 2. The radial stress response is again similar to that of Fig
and 3.
Fig. 6 Rotating hollow PZT-4 cylinder: VÄ5. Case 3: plots for stresses and potential for h
Ä1.3, 2, 4 „hÄb Õa….
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Recall that in the lower subfigure of Fig. 3, forh51.3 the hoop
stress is increasing whereas forh52 the hoop stress is decrea
ing. This suggests that by slightly modifying the boundary con
tions, we could obtain avirtually uniform hoop stressfor some
aspect ratio. Such uniformity of the hoop stress was demonstr
in @15# for the static problem. In fact, on settingF1(0)52 and
plotting these modified Case 2 boundary conditions, we
achieve a nearly uniform hoop stress distribution for aspect r
h52. This is shown in the lower subfigure of Fig. 5. The techn
logical consequences of a uniform hoop stress are interesting
cause orthotropic elastic cylinders fail at a critical hoop stre
Here we have shown that a suitably applied electric field
‘‘neutralize’’ a pre-existing mechanical hoop stress distribution

In Fig. 6, we show Case 3 plots for a higher rotational spe
namelyV55. On comparing with Fig. 4, we see that the doub
concavity in the plot for the potential forh54 has become even
more pronounced. The radial and hoop stresses have sim
shapes to those in Fig. 4, but their values have increased. Fu
increase of the rotational speed beyondV55 leads to graphs
similar to those in Fig. 6.

5 Rotating Solid Cylinder
We now examine the problem of a rotatingsolid piezoelectric

cylinder of radiusb. We will see that in this case, explicit closed
form analytic solutions can be obtained. We nondimensiona
the radial coordinate as

r5
r

b
, (69)

so that

0<r<1. (70)

It can be easily shown that the analysis of Section 3 carries o
on formally replacinga by b. Thus, the solutions for the stress
and potential are

s rr

c33
5AFrv121S bv1

21dbv12dv1
22av1

v1
22a D G 1

b

1BFrv221S bv2
21dbv22dv2

22av2

v2
22a D G 1

b

1CFr21S 12
db

a D G 1

b
1r2~3K21dK213K1!, (71)

suu

c33
5AFrv121S dbv1

22dv1
32av1

21bv1
3

v1
22a D G 1

b

1BFrv221S dbv2
22dv2

32av2
21bv2

3

v2
22a D G 1

b

1r2~3dK21aK213bK1!, (72)

and

F15A~rv1!
1

b
1B~rv2!

1

b
1C~ ln r!

1

b
1D

1

b
1K1r3, (73)

respectively. Likewise, the displacement is

u~r!5
~bv12v1

2!

~v1
22a!

Arv11
~bv22v2

2!

~v2
22a!

Brv22
b

a
C1bK2r3.

(74)

In the preceding,K1 andK2 are given by~61! and ~62!, respec-
tively, with

V5rd

v2b2

c33
. (75)
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The constantsA2D are arbitrary and will be determined from th
boundary conditions.

Since we are concerned with a solid cylinder, the displacem
and electric field at the origin must be finite. Thus, the constantB
andC must be set equal to zero. The solutions for the stresses
potential then reduce to

s rr

c33
5AFrv121S bv1

21dbv12dv1
22av1

v1
22a D G 1

b

1r2~3K21dK213K1!, (76)

suu

c33
5AFrv121S dbv1

22dv1
32av1

21bv1
3

v1
22a D G 1

b

1r2~3dK21aK213bK1!, (77)

and

F15A~rv1!
1

b
1D

1

b
1K1r3, (78)

respectively. We suppose that the lateral boundary is traction-
and that the electric potential is zero there, hence

s rr

c33
~1!50, (79)

F1~1!50. (80)

On using~76! in ~79! we obtain

A5
2b~3K21dK213K1!

S bv1
21dbv12dv1

22av1

v1
22a D . (81)

On inserting~81! into ~78! and using~80!, we find that

D5
b~3K21dK213K1!

S bv1
21dbv12dv1

22av1

v1
22a D 2bK1 . (82)

Thus the solutions~76!–~78! for the stresses and electric potenti
can be written

s rr

c33
5k1~2rv1211r2!, (83)

suu

c33
5k4S 2k1k3

k4k2
rv1211r2D , (84)

F152
k1

k2
rv11K1r31S k1

k2
2K1D , (85)

where

k15F ~31d!g131b

b21ag2929gGV, (86)

k25
bv1

21dbv12dv1
22av1

v1
22a

, (87)

k35v1k2 , (88)

k45F ~3d1a!g1~31b!b

b21ag2929g GV. (89)

Thus, for a solid piezoelectric cylinder, the solutions~83!–~85! are
in explicit closed form.

Before discussing our results for the piezoelectric problem,
turn to its purely mechanical analog. The stresses for the cas
an infinitely long rotating solid linearly elastic cylinder can b
obtained by formally discarding the electric terms in~28!, solving
the differential equation foru, and employing boundedness co
MAY 2003, Vol. 70 Õ 433
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Fig. 7 Stress plots for rotating solid circumferentially orthotropic elastic cylinder of radius b
„VÄ5…. The elastic constants are identical to those of PZT-4.
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ditions at the origin. Expressions foru are then substituted into
the stress-displacement relations, i.e.,~38! and~39! without theF
terms. On applying the boundary condition~79!, one obtains

s rr

c33
5

~31d!V

92a
@rAa212r2#, (90)

suu

c33
5

V

92a
@~31d!rAa212~3d1a!r2#. (91)

Aside from differences in notation, Eqs.~90! and~91! are simi-
lar to Eqs.~38! and~39! of Horgan and Baxter@16#, obtained for
a rotating elastic orthotropic disk in plane stress. As mentio
earlier,a can be written as

a5
Ēu

Ēr

, (92)

and we recall from~75! that

V5rd

v2b2

c33
. (93)

Whena .1, the elastic material iscircumferentially orthotro-
pic, while if a ,1, the material isradially orthotropic, @16#. For
an elastic material whose mechanical properties are identica
the mechanical properties of PZT-4, we have seen in Table
Section 4 thata51.21 andd50.65. The stresses~90! and~91! for
such a material are plotted in Fig. 7, and these graphs are sim
to Figs. 6 and 7 of@16#. Both the radial and hoop stresses tend
zero at the origin, as is shown in@16# for any circumferentially
orthotropic material. This can be seen directly from~90!, ~91! as
r→0. On the other hand, for radially orthotropic materialsa
,1), it can be seen from~90!, ~91! that there are stress singular
ties at the origin,@16#. We recall from@16# that the stress respons
in the isotropic case (a51) is quite different.

The purely mechanical material for which the stresses are p
ted in Fig. 7 has a value ofa identical to that of PZT-4, i.e.,a
MAY 2003
ed

l to
of

ilar
to

i-
e

lot-

51.21. Thus, one might expect that PZT-4 would behave lik
circumferentially orthotropic elastic material. However, the stre
plots for PZT-4 in Fig. 8 are quite different from those in Fig.
As we see in the lower two subfigures of Fig. 8, the stresses
PZT-4 tend toinfinity at the origin. As pointed out above, stre
singularities at the center of a rotating elastic solid cylinder
characteristic of aradially orthotropicelastic material, that is, of a
material for whicha ,1. In Fig. 8 we see these singularitie
occurring in a piezoelectric material for whicha .1. This appar-
ent paradox can be explained on returning to Eqs.~83! and ~84!.
We note that each of these equations contains arv121 term, where
we recall from~33! that

v15Ab21ag

11g
. (94)

Thus for v1,1, stress singularities occur as one approaches
origin while for v1.1, the stresses are zero at the origin. O
using~94!, these conditions may be written directly in terms of t
parametersa, b, g defined in~16!–~18!. Thus stress singularities
occur at the origin if

g~a21!,12b2 (95)

while the stresses are zero at the origin if the sign in~95! is
reversed.

For PZT-4, it can be verified on using Table 2 thatv1 has a
value of 0.96. Thus for PZT-4,v1,1 so that~95! is satisfied and
one obtains the stress singularities shown in Fig. 8. Thus, fo
rotating solid piezoelectric cylinder, it is not the purely elas
parametera, but ratherv1 ~a combination of electrical and me
chanical parameters! which determines the full nature of th
orthotropy. In this sense, PZT-4 in fact behaves like a radia
orthotropic elastic material.

In Fig. 7 for the purely elastic cylinder, both the radial and ho
stresses have aninterior maximum. The maximum hoop stres
occurs approximately atr50.25 and has a value ofsuu /c33
'0.42. For the piezoelectric cylinder with results shown in Fig.
Transactions of the ASME
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Fig. 8 Rotating solid PZT-4 cylinder of radius b „VÄ5…: plots for the stresses and potential
versus rÄr Õb
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we see that even before the hoop stress tends to infinity as
approaches the origin, it attains values in excess ofsuu /c3352.
This may be attributed to the rotation induced piezoelectric eff
Rotation induces both stresses and electric potential, and th
duced electric potential further increases the stresses.

6 Concluding Remarks
It should be noted that the virtual uniformity of the hoo

stresses discussed in Section 4 for the hollow cylinder has b
demonstrated for the specific piezoceramic PZT-4. It would be
interest to explore this phenomenon analytically for general pie
ceramics but we shall not pursue this here. The technological
plications of the above are significant. For example, it shows
an existing mechanical hoop stress distribution can be neutra
by a suitably applied electric field.

The special case of a rotating solid piezoelectric cylinder, f
of traction and applied voltage on its surface was seen to be a
nable to a full analytic solution. In this case, explicit closed-fo
solutions were obtained. It was shown that stress singularitie
the origin can occur for certain piezoelectric materials, analog
to those occurring in the purely mechanical problem for radia
orthotropic materials.

Finally, we note that here attention has been focussed on r
ally polarized piezoelectric cylinders. The axisymmetric proble
for axially polarized piezoelectric tubes, exhibiting transve
isotropy, has also been considered in the literature~see, e.g.,@10#!.
This problem is particularly simple since there is a complete
coupling of mechanical and electrical effects in this case.
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Transient Responses in a
Piezoelectric Spherically Isotropic
Hollow Sphere for Symmetric
Problems
By virtue of the separation of variables technique, the spherically symmetric electroe
dynamic problem of a spherically isotropic hollow sphere is transformed to an inte
equation about a function with respect to time, which can be solved successfully by m
of the interpolation method. Then the solution of displacements, stresses, electri
placements, and electric potential are obtained. The present method is suitable
piezoelectric hollow sphere with an arbitrary thickness subjected to spherically symm
electric potential and radial mechanical loads, that both can be arbitrary functions ab
the time variable, at the internal and external surfaces.@DOI: 10.1115/1.1554415#
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1 Introduction
The dynamic problems of hollow spheres and spherical sh

have been studied for many years. For elastic materials, base
the momentless thin shell theory, Huth and Cole@1# studied the
stress waves in a spherical shell produced by dynamic loads.
dynamic responses in a thin spherical shell subjected to an
symmetric pressure loading were considered by Baker et al.@2#.
Using the method of characteristics, Chou and Koenig@3# and
Rose et al.@4# studied the dynamic responses of cylindrical a
spherical shells. By means of the finite Hankel transform a
Laplace transform, Cinelli@5# obtained the theoretical solutions o
dynamic problems of cylindrical and spherical shells. Pao a
Ceranoglu@6# completed the transient responses in a thick-wal
spherical shell by the ray theory. While for piezoelectric materia
Loza and Shul’ga@7,8# studied the axisymmetric free and force
vibrations of piezoceramic hollow spheres. Shul’ga@9–11# dis-
cussed the radial and three-dimensional free vibrations of pie
ceramic hollow spheres. Heyliger and Wu@12# investigated the
spherically symmetric free vibration with the radial electric d
placement zero on the boundary. Cai et al.@13# obtained the natu-
ral frequencies of a piezoceramic hollow sphere submerged
compressible fluid. Chen et al.@14# studied the three-dimensiona
free vibration of a fluid-filled piezoelectric hollow sphere. Bor
syuk and Kirichok @15# analyzed the spherically symmetr
steady-state responses in a piezoceramic hollow sphere subm
in a compressible fluid. Li et al.@16# solved the spherically sym
metric steady-state responses in a laminated spherical shell
sisting of piezoelectric and elastic layers. Comparing with
nonpiezoelectric case, it is more difficult to obtain the dynam
analytical solution because of the special coupling effect betw
mechanical deformation and electrical field in piezoelectric ma
rials. At present, most works on dynamic behaviors of piezoe
tric hollow spheres are concerned with problems of free vibrat
and steady-state response while the transient responses, alth
they are very important practically, have not been studied to
author’s knowledge.
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In this paper, the separation of variables technique is applie
solve transient responses of the spherically symmetric problem
piezoelectric hollow spheres subjected to dynamic loads. Firs
new dependent variable is introduced to rewrite the govern
equation, the mechanical boundary conditions as well as the in
conditions. Second, a special function is introduced to transfo
the inhomogeneous mechanical boundary conditions into the
mogeneous ones. Third, by virtue of the orthogonal expans
technique, along with the initial conditions as well as electric
boundary conditions, the integral equation about a function w
respect to time is derived, which can be solved by means of
interpolation method. The displacements, stresses, electric
placements, and electric potential are finally obtained. The pre
method is suitable for a hollow sphere with an arbitrary thickn
subjected to arbitrary mechanical and electrical loads. Numer
examples are considered and comparison of responses betw
piezoelectric sphere and the purely elastic sphere is made.

2 Basic Equations
To study the hollow sphere, it is convenient to use the spher

coordinate system (r ,u,w) with the origin identical to the cente
of the sphere. For the spherically symmetric problem, we h
uu5uw50, ur5ur(r ,t) andF5F(r ,t), whereui ( i 5r ,u,w) and
F are components of displacement and electric potential, res
tively. In this case, the strain-displacement relations are simpli
as

g rr 5
]ur

]r
, guu5gww5

ur

r
, (1)

whereg i j are the strain components. The constitutive relations
spherically isotropic, radially polarized piezoelectric media a
read as

suu5~c111c12!guu1c13g rr 1e31

]F

]r
,

s rr 52c13guu1c33g rr 1e33

]F

]r
, (2)

Dr52e31guu1e33g rr 2«33

]F

]r
,

0,
the
nt of
ara,
nal
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where ci j , ei j , and « i j are elastic, piezoelectric, and dielectr
constants, respectively, ands i j and Dr are the components o
stress and the radial electric displacement, respectively. The e
tion of motion is

]s rr

]r
12

s rr 2suu

r
5r

]2ur

]t2 , (3)

wherer is the mass density. In absence of free charge density
charge equation of electrostatics is

1

r 2

]

]r
~r 2Dr !50. (4)

For the analysis, the following nondimensional quantities
introduced:

c15
c11

c33
, c25

c12

c33
, c35

c13

c33
, e15

e31

Ac33«33

, e35
e33

Ac33«33

,

s i5
s i i

c33
~ i 5r ,u,w!, f5A«33

c33

F

b
, D5

Dr

Ac33«33

, (5)

u5
ur

b
, j5

r

b
, s5

a

b
, cv5Ac33

r
, t5

cv

b
t,

wherea andb are the inner and outer radii of the hollow sphe
respectively. Then by virtue of Eq.~5!, Eqs.~1!–~4! can be rewrit-
ten as follows:

g rr 5
]u

]j
, guu5gww5

u

j
. (6)

su5~c11c2!
u

j
1c3

]u

]j
1e1

]f

]j
,

s r52c3

u

j
1

]u

]j
1e3

]f

]j
, (7)

D52e1

u

j
1e3

]u

]j
2

]f

]j
.

]s r

]j
12

s r2su

j
5

]2u

]t2 . (8)

1

j2

]

]j
~j2D !50. (9)

The boundary conditions are

s r~s,t!5pa~t!, s r~1,t!5pb~t!, (10a)

f~s,t!5fa~t!, f~1,t!5fb~t!, (10b)

where pa(t) and pb(t) are the known dimensionless pressur
acting on the internal and external surfaces of the sphere, res
tively, andfa(t) andfb(t) are the known dimensionless electr
potentials imposed on the internal and external surfaces, res
tively.

The initial conditions are expressed as

t50: u~j,0!5u0~j!, u̇~j,0!5v0~j!, (11)

where a dot over a quantity denotes its partial derivative w
respect to time.

3 Analysis
First, we rewrite the third equation in Eq.~7! as

]f

]j
52e1

u

j
1e3

]u

]j
2D. (12)

Then substituting the above equation into the first two equati
in Eq. ~7!, gives
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su5~c1
D1c2

D!
u

j
1c3

D
]u

]j
2e1D,

(13)

s r52c3
D

u

j
1c0

D
]u

]j
2e3D,

where

c1
D5c11e1

2, c2
D5c21e1

2, c3
D5c31e1e3 , c0

D511e3
2.
(14)

The solution of Eq.~9! is

D~j,t!5
1

j2 d~t! (15)

whered(t) is an unknown function with respect to the dimensio
less timet. Substituting Eq.~13! into Eq. ~8! and utilizing Eq.
~15! gives

]2u

]j2 1
2

j

]u

]j
2

m1
2

j2 u5
1

cL
2

]2u

]t222
e1

c0
D

1

j3 d~t!, (16)

where

m15A2
c1

D1c2
D2c3

D

c0
D , cL5Ac0

D. (17)

Utilizing the second equation in Eqs.~13! and ~15!, we can re-
write Eq. ~10a! as

j5s: c0
D

]u

]j
12c3

D
u

j
5pa~t!1

e3

s2 d~t!,
(18)

j51: c0
D

]u

]j
12c3

D
u

j
5pb~t!1e3d~t!.

Secondly, a new dependent variablew(j,t) is introduced:

u~j,t!5j21/2w~j,t!. (19)

Then Eqs.~16!, ~18!, and~11! become

]2w

]j2 1
1

j

]w

]j
2

m2

j2 w5
1

cL
2

]2w

]t2 1X~j!d~t!, (20)

j5s:
]w

]j
1h

w

j
5p1~t!,

(21)

j51:
]w

]j
1h

w

j
5p2~t!,

w~j,0!5u1~j!, ẇ~j,0!5v1~j!, (22)

where

h52
c3

D

c0
D2

1

2
, m5Am1

21
1

4
, X~j!522

e1

c0
D

1

j5/2,

p1~t!5
s1/2

c0
D Fpa~t!1

e3

s2 d~t!G , p2~t!5
1

c0
D @pb~t!1e3d~t!#,

(23)

u1~j!5j1/2u0~j!, v1~j!5j1/2v0~j!.

Third, in order to transform the inhomogeneous mechan
boundary conditions into the homogeneous ones, we assume

w~j,t!5w1~j,t!1w2~j,t!, (24)

wherew2(j,t) satisfies the inhomogeneous mechanical bound
conditions and can be taken as

w2~j,t!5A0~j2s!mp2~t!1B0~j21!mp1~t!, (25)

in which
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A05
1

m~12s!m211h~12s!m ,

B05
1

m~s21!m211h~s21!m/s
, (26)

andm is an integer no less than 2, which should satisfy

@m~12s!m211h~12s!m#@m~s21!m211h~s21!m/s#Þ0.
(27)

Substitutingp1(t) andp2(t) in Eq. ~23! into Eq. ~25! gives

w2~j,t!5 f 1~j!pa~t!1 f 2~j!pb~t!1 f 3~j!d~t!, (28)

where

f 1~j!5s1/2
B0

c0
D ~j21!m, f 2~j!5

A0

c0
D ~j2s!m,

f 3~j!5e3F 1

s2 f 1~j!1 f 2~j!G . (29)

Substituting Eq.~24! into Eqs.~20!–~22! yields

]2w1~j,t!

]j2 1
1

j

]w1~j,t!

]j
2

m2

j2 w1~j,t!

5
1

cL
2

]2w1~j,t!

]t2 1g~j,t!, (30)

]w1~j,t!

]j
1h

w1~j,t!

j
50, ~j5s and 1!, (31)

w1~j,0!5u2~j!2 f 3~j!d~0!, ẇ1~j,0!5v2~j!2 f 3~j!ḋ~0!,
(32)

where

g~j,t!5g1~j,t!1g2~j!d~t!1g3~j!d̈~t!, (33a)

u2~j!5u1~j!2 f 1~j!pa~0!2 f 2~j!pb~0!,
(33b)

v2~j!5v1~j!2 f 1~j!ṗa~0!2 f 2~j!ṗb~0!

and

g1~j,t!5 f 4~j!pa~t!1 f 5~j!pb~t!1@ f 1~j!p̈a~t!

1 f 2~j!p̈b~t!#/cL
2,

g2~j!5
m2

j2 f 3~j!2
1

j

d f3~j!

dj
2

d2f 3~j!

dj2 1X~j!,

g3~j!5
f 3~j!

cL
2 ,

(34)

f 4~j!5
m2

j2 f 1~j!2
1

j

d f1~j!

dj
2

d2f 1~j!

dj2 ,

f 5~j!5
m2

j2 f 2~j!2
1

j

d f2~j!

dj
2

d2f 2~j!

dj2 .

Using the separation of variables technology, the solution
Eq. ~30! can be assumed as

w1~j,t!5(
i

Ri~j!Fi~t!, (35)

whereFi(t) is an undetermined function andRi(j) is given as
follows:

Ri~j!5Jm~kij!Y~m,ki ,s!2Ym~kij!J~m,ki ,s!, (36)
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in which Jm(kij) andYm(kij) are Bessel functions of the first an
second kinds of orderm. The eigenvalueski , arranged in an as-
cending order, are a series of positive roots of the following eq
tion:

J~m,ki ,s!Y~m,ki ,1!2J~m,ki ,1!Y~m,ki ,s!50, (37)

where

J~m,ki ,j!5
dJm~kij!

dj
1h

Jm~kij!

j
,

Y~m,ki ,j!5
dYm~kij!

dj
1h

Ym~kij!

j
. (38)

It can be shown thatw1(j,t) given in Eq.~35! satisfies the ho-
mogeneous mechanical boundary conditions in Eq.~31!. Substi-
tuting Eq.~35! into Eq. ~30! gives

2cL
2(

i
ki

2Fi~t!Ri~j!5(
i

Ri~j!
d2Fi~t!

dt2 1cL
2g~j,t!.

(39)

By virtue of the orthogonal properties of Bessel functions, it
easy to verify thatRi(j) has the following properties:

E
s

1

jRi~j!Rj~j!dj5Nid i j , (40)

whered i j is the Kronecker delta, and

Ni5
1

2ki
2 H FdRi~1!

dj G2

2s2FdRi~s!

dj G2

1ki
2@Ri

2~1!2s2Ri
2~s!#

2m2@Ri
2~1!2Ri

2~s!#J , (41)

in which dRi(s)/dj5dRi(j)/djuj5s and dRi(1)/dj
5dRi(j)/djuj51 . Utilizing Eq. ~40!, we can derive the following
equation from Eq.~39!:

d2Fi~t!

dt2 1v i
2Fi~t!5qi~t!, (42)

where

qi~t!5q1i~t!1h1id~t!1h2i d̈~t!,

v i5kicL , q1i~t!52
cL

2

Ni
E

s

1

jg1~j,t!Ri~j!dj, (43)

h1i52
cL

2

Ni
E

s

1

jg2~j!Ri~j!dj, h2i52
cL

2

Ni
E

s

1

jg3~j!Ri~j!dj.

The solution of Eq.~42! is

Fi~t!5H1i cosv it1
H2i

v i
sinv it1

1

v i
E

0

t

qi~p!sinv i~t2p!dp.

(44a)

We can derive the following equation from Eq.~44a!

Ḟ i~t!52v iH1i sinv it1H2i cosv it

1E
0

t

qi~p!cosv i~t2p!dp, (44b)

whereH1i and H2i are unknown constants. Using Eq.~35!, Eq.
~32!, and utilizing Eq.~40!, gives

H1i5I 1i1I 2id~0!, H2i5I 3i1I 2i ḋ~0!, (45)

where
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Ni
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1

ju2~j!Ri~j!dj, I 2i5
21

Ni
E

s

1

j f 3~j!Ri~j!dj,

I 3i5
1

Ni
E

s

1

jv2~j!Ri~j!dj. (46)

Noticing that qi(t) in Eq. ~44! includes d̈(t), we use the
integration-by-parts formula and obtain

E
0

t

d̈~p!sinv i~t2p!dp

52ḋ~0!sinv it2d~0!v i cosv it1v id~t!

2v i
2E

0

t

d~p!sinv i~t2p!dp. (47)

Substituting the first equation in Eq.~43! into Eq. ~44a! and uti-
lizing Eq. ~47!, gives

Fi~t!5F1i~t!1h2id~t!1S h1i

v i
2h2iv i D E

0

t

d~p!sinv i~t2p!dp,

(48)
where

F1i~t!5H1i cosv it1
H2i

v i
sinv it1

1

v i
E

0

t

q1i~p!sinv i~t2p!dp

2
h2i

v i
@ ḋ~0!sinv it1d~0!v i cosv it#. (49)

In the following, we will determined(t) from the electric bound-
ary conditions. Substituting Eq.~15! into Eq. ~12!, gives

]f

]j
52e1

u

j
1e3

]u

]j
2

1

j2 d~t!. (50)

Then substituting Eq.~24! into Eq. ~19!, and utilizing Eqs.~28!
and ~35!, we obtain

u~j,t!5j21/2F(
i

Ri~j!Fi~t!1 f 1~j!pa~t!1 f 2~j!pb~t!

1 f 3~j!d~t!G . (51)

Integrating Eq.~50! and utilizing Eq.~51!, derives

f~j,t!5f1~j!pa~t!1f2~j!pb~t!1f3~j!d~t!

1(
i

f4i~j!Fi~t!1fa~t!, (52)

where

f1~j!52e1E
s

j

j23/2f 1~j!dj1e3@j21/2f 1~j!2s21/2f 1~s!#,

f2~j!52e1E
s

j

j23/2f 2~j!dj1e3@j21/2f 2~j!2s21/2f 2~s!#,

(53)

f3~j!52e1E
s

j

j23/2f 3~j!dj1e3@j21/2f 3~j!2s21/2f 3~s!#1
1

j

2
1

s
,

f4i~j!52e1E
s

j

j23/2Ri~j!dj1e3@j21/2Ri~j!!2s21/2Ri~s!].

If j51, Eq. ~52! reads as

fb~t!5f1~1!pa~t!1f2~1!pb~t!1f3~1!d~t!

1(
i

f4i~1!Fi~t!1fa~t!. (54)
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Then

ḟb~t!5f1~1!ṗa~t!1f2~1!ṗb~t!1f3~1!ḋ~t!

1(
i

f4i~1!Ḟ i~t!1ḟa~t!. (55)

If t50, we can determined(0) andḋ(0) from Eqs.~54! and~55!
by virtue of Eqs.~44! and ~45!:

d~0!5
fb~0!2fa~0!2f1~1!pa~0!2f2~1!pb~0!2( if4i~1!I 1i

f3~1!1( if4i~1!I 2i
,

(56)

ḋ~0!5
ḟb~0!2ḟa~0!2f1~1!ṗa~0!2f2~1!ṗb~0!2( if4i~1!I 3i

f3~1!1( if4i~1!I 2i
.

Substitutingd(0) andḋ(0) into Eqs.~45! and~49!, thenH1i and
H2i become known andF1i(t) is a known function. Substituting
Eq. ~48! into Eq. ~54! derives

c~t!5E1d~t!1(
i

E2iE
0

t

d~p!sinv i~t2p!dp, (57)

where

c~t!5fb~t!2fa~t!2f1~1!pa~t!2f2~1!pb~t!

2(
i

f4i~1!F1i~t!,

(58)

E15f3~1!1(
i

f4i~1!h2i , E2i5f4i~1!S h1i

v i
2h2iv i D .

It is noted that Eq.~57! is a Volterra integral equation of the
second kind, which is sure to have a unique solution,@17#. For
some cases, the analytical solutions can be obtained. While fo
general case, numerical methods are needed. In this paper, we
construct the recursive formula by making use of a linear inter
lation function approximation ofd(t). Practically, the numerica
result can be obtained efficiently by the present method. In or
to show the method, we first divide the time interval@0,tn# into n
subintervals, with discrete time pointst050, t1 , t2 , . . . tn .
Then the interpolation function at the interval@t j 21 ,t j # is

d~t!5z j~t!d~t j 21!1h j~t!d~t j ! ~ j 51,2, . . . ,n!, (59)

where

z j~t!5
t2t j

t j 212t j
, h j~t!5

t2t j 21

t j2t j 21
, ~ j 51,2, . . . ,n!.

(60)

Substituting Eq.~59! into Eq. ~57!, gives

c~t j !5E1d~t j !1(
i

E2i(
k51

j

@Li jkd~tk21!1Mi jkd~tk!#

(61)

where

Li jk5E
tk21

tk

zk~p!sinv i~t j2p!dp,

Mi jk5E
tk21

tk

hk~p!sinv i~t j2p!dp,

~k51,2 . . . j , j 51,2 . . .n!. (62)

Then we can derive the following formula from Eq.~61!:
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In Eq. ~56!, we have obtainedd(0), then from which we can
obtaind(t j ), ( j 51,2, . . . ,n) step by step by virtue of Eq.~63!.
After d(t) is obtained,u(j,t) andf~j,t! also can be determined

4 Numerical Results and Discussions
We first study the validity of the proposed numerical meth

for solving the integral equation c(t)5E1d(t)
1( i 51

m E2i*0
td(p)sinvi(t2p)dp. Note that ifd(t) is a polynomial

or an exponential function of timet, the functionc~t! can be
obtained explicitly by substitutingd(t) into the integral equation
and performing the integration analytically.

Example 1. In this example, we consider two forms ofd(t),
i.e., d(t)5100.0150.0t12.0t210.1t3 and d(t)5100.0
3e20.2t150.0, for which analytical express ofc~t! can be ob-
tained. For calculation, we takem530, v i5$1.4278, 7.4792,
14.6938, 21.9699, 29.2605, 36.5568, 43.8559, 51.1566, 58.4
65.7607, 73.0635, 80.3667, 87.6701, 94.9737, 102.27
109.5814, 116.8854, 124.1895, 131.4936, 138.7978,146.1
153.4064, 160.7107, 168.015, 175.3194, 182.6238, 189.9
197.2327, 204.5372, 211.8417%, E1520.691662, E2i
5$0.1040,0.60669, 0.0093643, 0.19733, 0.0044263, 0.1179
0.00291596, 0.0841636, 0.0021776, 0.0654299, 0.0017
0.05352, 0.0014472, 0.04528, 0.0012396, 0.03924, 0.0010
0.03462, 0.00096343, 0.030976, 0.0008669, 0.0280
0.00078796, 0.025587, 0.0007222, 0.02354, 0.00066
0.021796, 0.00061894, 0.020296%, andc~t! is obtained theoreti-
cally by substituting the prescribedd(t) into the integral equa-
tion. The results presented in Tables 1 and 2 are for the poly
mial d(t), while those in Tables 3 and 4 for the exponentiald(t).
The method using the trapezium rule to solve the integral equa
can be found in Ref.@18#.

From Tables 1–4, we can find that the present method h
very high accuracy for numerical computation. In the followin
we will study the transient response of a piezoelectric holl
sphere using the present method.

Table 1 Numerical results for step length DtÄ0.1

Time
Theoretical

Results

The Trapezium Rule The Present Method

Numerical
Results

Relative
Error

Numerical
Results

Relative
Error

0.0 100.0 100.0000 0.000 100.000 0.000
2.0 208.8 193.6295 27.266E-2 208.8018 8.842E-6
4.0 338.4 322.9652 24.561E-2 338.4019 5.681E-6
6.0 493.6 470.8311 24.613E-2 493.6021 4.328E-6
8.0 679.2 650.1156 24.282E-2 679.2021 3.145E-6

10.0 900.0 862.1855 24.202E-2 900.0021 2.306E-6

Table 2 Numerical results for step length DtÄ0.5

Time
Theoretical

Results

The Trapezium Rule The Present Method

Numerical
Results

Relative
Error

Numerical
Results

Relative
Error

0.0 100.0 100.000 0.000 100.000 0.000
10.0 900.0 686.866 20.237 900.072 7.948E-5
20.0 2700.0 2059.821 20.237 2700.131 4.856E-5
30.0 6100.0 4612.715 20.244 6100.163 2.674E-5
40.0 11700.0 8857.273 20.243 11700.231 1.978E-5
50.0 20100.0 15218.591 20.243 20100.282 1.380E-5
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Example 2. The transient response of a PZT-4 piezoelect
hollow sphere subjected to a constant pressure suddenly ap
on the internal surface is considered. The material constants
c115c225139.0 GPa, c12577.8 GPa, c13574.3 GPa, c33

5115.4 GPa, e31525.2 C/m2, e33515.1 C/m2, «3355.62
31029 C2/(Nm2). For the sake of comparison, we also consid
an elastic hollow sphere with the elastic constants identica
those of the PZT-4 sphere. The boundary conditions are

pa~t!52s0H~t!, pb~t!50.0,
(64)

fa~t!50.0, fb~t!50.0,

wheres0 is a prescribed constant stress, andH(t) is the Heavi-
side function. In the following, we takes051.0, s50.5, m52,
and n5200, and the first 40 terms of the series in Eq.~35! for
numerical calculations.

Figure 1 shows the responses ofs r at j50.75 ~the middle sur-
face! in the PZT-4 and elastic hollow spheres. From the curv
we can see that the curve of the PZT-4 sphere is different fr
that of the elastic one.

Figure 2 gives the responses ofsu at j50.5 ~the internal sur-
face! in the PZT-4 and elastic hollow spheres. For the PZT
sphere, we find that the maximum value of the dynamic ho
stress appears at the internal surface, which is tensile. The
peak value appears at the timet51.45 and it is 2.25 times of the
applied stress. For the elastic hollow sphere, we have almos
same observations, except that the first peak value is just
times of the applied stress, which is less than that in the PZ
sphere.

Figures 3 and 4 illustrate the responses of dimensionless ra
electric displacementD at different locations~j50.5,j50.75 and
j51.0! and the distributions of dimensionless electric potentiaf
at the different times~t50.1, t50.2 andt50.5!, respectively, in
the PZT-4 hollow sphere subjected to a sudden constant pres
on the internal surface. From Fig. 4, we find that the calcula
electric potentials both at the internal and external surfaces

Table 3 Numerical results for step length DtÄ0.1

Time
Theoretical

Results

The Trapezium Rule The Present Method

Numerical
Results

Relative
Error

Numerical
Results

Relative
Error

0.0 150.000 150.000 0.000 150.000 0.000
2.0 117.032 101.913 21.289E-1 117.033 1.050E-5
4.0 94.933 91.641 23.468E-2 94.933 5.867E-6
6.0 80.119 73.017 28.865E-2 80.120 6.475E-6
8.0 70.190 71.912 2.454E-2 70.189 22.609E-6

10.0 63.534 63.653 1.882E-3 63.533 25.344E-6

Table 4 Numerical results for step length DtÄ0.5

Time
Theoretical

Results

The Trapezium Rule The Present Method

Numerical
Results

Relative
Error

Numerical
Results

Relative
Error

0.0 150.000 150.000 0.000 150.000 0.000
10.0 63.534 53.110 20.164 63.536 3.254E-5
20.0 51.832 42.306 20.184 51.845 2.505E-4
30.0 50.248 31.182 20.379 50.245 25.253E-5
40.0 50.036 39.326 20.214 50.051 3.500E-4
50.0 50.005 37.043 20.259 50.020 3.028E-4
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Fig. 1 History of dynamic stress s r at jÄ0.75

Fig. 2 History of dynamic stress su at jÄ0.5
t

t
e

erial
con-
zero, which satisfy the prescribed electric boundary conditio
The correctness of the numerical results is thus clarified in
respect.

Example 3. The transient response of a PZT-4 piezoelec
hollow sphere subjected to a constant electric potential sudd
hanics
ns.
his

ric
nly

imposed on the external surface is considered here. The mat
constants are the same as those in Example 2. The boundary
ditions become

pa~t!50.0, pb~t!50.0,
(65)
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Fig. 3 Histories of dynamic electric displacement D at different locations
e
xi-
fa~t!50.0, fb~t!5f0H~t!,

wheref0 is the prescribed constant electric potential. For num
cal calculations, the same parameters as that in Example 2
employed, except thatf051.0 is used instead ofs051.0.
03
ri-
are

Figures 5 and 6 show the dynamic responses ofs r and su in
the PZT-4 hollow sphere. From the results, we find that the ma
mum value ofs r appears nearj50.75~the middle surface!, while
that of su appears atj50.5 ~the internal surface!. The first peak
Fig. 4 Distributions of dynamic electric potential f at different times
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Fig. 5 Histories of dynamic stress s r at different locations

Fig. 6 Histories of dynamic stress su at different locations
x
h
c

ies
at
the
.

be
value ofsu is 4.11 that appears att51.45. Figures 7 and 8 give
the dynamic responses ofD andf at different locations~j50.5,
j50.75, andj51.0! in the PZT-4 sphere. It is seen that the ma
mum absolute value ofD appears at the internal surface, and t
calculated electric potential also satisfies the prescribed ele
boundary conditions.
hanics
i-
e
tric

In terms of the numerical results for different terms of the ser
in Eq. ~35!, we find that the results vary very slightly between th
of 30 terms and 40 terms. So we take the first 40 terms of
series in Eq.~35! for computation involved in Examples 2 and 3

If the electric boundary conditions in Eq.~10b! are expressed
by the electric displacement, only one boundary condition will
MAY 2003, Vol. 70 Õ 443
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Fig. 7 Histories of dynamic electric displacement D at different locations
d

q
a

ip

ng
involved. That is because, if the electric displacement is p
scribed on one surface, then the distribution of the electric
placement can be determined immediately from Eq.~15!. In this
case, from the beginning to Eq.~49!, the displacement solution
can be determined and the procedure of solving the integral e
tion can be avoided. The expression for electric potential can
03
re-
is-

ua-
lso

be written as Eq.~52!. But if we want to determinef~j,t! com-
pletely, one boundary condition related tof must be known. That
is, eitherfa(t) or fb(t) should be prescribed. The relationsh
betweenfa(t) andfb(t) is given in Eq.~54!.

If zk(t) andhk(t) are polynomials oft, the integration in Eq.
~62! can be obtained explicitly, which can improve the computi
Fig. 8 Histories of dynamic electric potential f at different locations
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accuracy. Using linear or high-order interpolation functions to
proximated(t), accurate results can be obtained efficiently. It
noted here that the recursive formula is very simple for the lin
interpolation function approximation, especially when an eq
time-step is adopted. Based on many numerical tests, we find
satisfactory numerical results can be obtained when the time-
Dt<0.05.

5 Conclusions
The paper firstly transforms the spherically symmetric elas

dynamic problem of a piezoelectric spherically isotropic hollo
sphere into a Volterra integral equation of the second kind abo
function with respect to time. Then a highly accurate numeri
method is particularly proposed and the problem is then co
pletely solved. The work enriches the solution method for d
namic problems in piezoelasticity. It is also very useful for car
ing out the active control of structures using piezoelec
materials.
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Elastic Singularity Interacting With
Various Types of Interfaces

S. T. Choi

Y. Y. Earmme1

e-mail: yyearmme@kaist.ac.kr
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The elastic solution for a singularity in an anisotropic trimateri
with perfectly bonded interfaces was obtained in the previ
work by Choi and Earmme. The term ‘‘trimaterial’’ denotes a
infinite body composed of three dissimilar materials bonded al
two parallel interfaces. It is shown in this paper that when t
interfaces of an anisotropic trimaterial are one of the followin
types: (i) perfectly bonded, (ii) rigid, (iii) separated, (iv) sep
rated without slip, and (v) slipping interfaces, the elastic soluti
for a singularity in the trimaterial has the same form as that for
singularity in a trimaterial with perfectly bonded interfaces, b
with the bimaterial matrices properly altered.
@DOI: 10.1115/1.1571858#

1 Introduction
The interface between two monocrystalline materials exists

frequently used structures of microelectronics and optoelectron
To accommodate the lattice mismatch across the interface, va
types of interfaces and interface structures evolve in such a
that the total free energy of the system is at its lowest value,@1#.
For example, the defects like dislocations are often formed at
interface to relax the mismatch strain, and the periodic array
those dislocations makes the interface incoherent. However,
elastic field near defects cannot be easily obtained because o
difficulty in satisfying the boundary conditions at the free surfac
and/or various types of interfaces. Recently, Choi and Earmme@2#

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 2
2002; final revision, November 12, 2002. Associate Editor: J. R. Barber.
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obtained the solution of a singularity in an anisotropic trimater
by employing the method of analytic continuation,@3#, and
Schwarz-Neumann’s alternating technique,@4#. In their study, two
interfaces are considered as perfectly bonded interfaces. It wi
shown in this study that the solution of a singularity in an anis
tropic trimaterial with ~i! perfectly bonded,~ii ! separated,~iii !
rigid, ~iv! separated without slip, and~v! slipping interfaces can be
easily obtained from their solution. To make this presentation c
cise, the notations in@2# are employed here and the reader
referred to@2# if the more detailed explanation or explicit form i
needed for the quantity omitted here for convenience of reduc
in length.

2 Solution Procedure and Result
The elastic field of an anisotropic body can be represente

terms of three functionsf j (zjI
) ( j 51,2,3), each of which is ana

lytic in its argumentzj5x11m j x2 for a two-dimensional problem
i.e., with geometry and external loading invariant in th
x3-direction. Herem j is the eigenvalue with positive imaginar
part of the sextic equation, Eq.~6! of @2#. The convention of
summation over a repeated subscript is used, but the index
underlined bar does not imply summation, that is,Ai j f j (zjI

)
5Ai1f 1(z1)1Ai2f 2(z2)1Ai3f 3(z3) but f j (zjI

)Þ f 1(z1)1 f 2(z2)
1 f 3(z3). If the anisotropic material has the monoclinic symme
plane with respect tox350, the in-plane and antiplane deforma
tions are decoupled,@5#, which will be separately considered i
this paper. The coupled case may be easily treated by the ex
sion of the same procedure as described in this paper, howeve
omit it in this brief note.

In-Plane Deformation. Let us consider an anisotropic bima
terial ~Fig. 1~a!! undergoing inplane deformation. Across the i
terface, the normal and shear stresses are continuous, th
s2i

a (x1)5s2i
b (x1) ( i 51,2), where the superscriptsa andb stand

for materialsa and b, respectively. In this study, five types o
interfaces are considered, which are classified according to
boundary conditions as follows:

Type 1~perfectly bonded! :u1
a~x1!5u1

b~x1!, u2
a~x1!5u2

b~x1!,

Type 2~separated! :s21
b ~x1!5s22

b ~x1!50,

Type 3~rigid! :u1
b~x1!5u2

b~x1!50,

Type 4~separated without slip! :u1
a~x1!5u1

b~x1!,s22
b ~x1!50,

Type 5~slipping! :s21
b ~x1!50,u2

a~x1!5u2
b~x1!.

It is noted here that Type 2 interface means the free surface.
,

03 by ASME Transactions of the ASME
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Fig. 1 Singularity in an anisotropic bimaterial „a… and trimaterial „b…
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By applying the method of analytic continuation, Suo@3# ex-
pressed the solution for a singularity in an anisotropic bimate
~Fig. 1~a!! with perfectly bonded interface~i.e., Type 1 interface!
as follows,@2#:

f i~ziI!5H Ui j
abf j

0~ziI
a!, in Sa ,

V̄i j
abf̄ j

0~ziI
b!1 f i

0~ziI
b!, in Sb ,

(1)

in which f j
0(z) is the solution for the same singularity in a hom

geneous medium, andU andV are expressed in terms of materi
matricesL andB as,@2#,

Uab5~La!21~ I1Tab!Lb, (2)

Vab5~ L̄b!21TabLb, (3)

Tab5~Ba1B̄b!21~Bb2Ba! ~Type 1 interface!. (4)

By employing the similar procedure used by Suo@3# for an
anisotropic bimaterial having one of the other types of interfa
the solution for a singularity in the anisotropic bimaterial can
obtained, but the details are suppressed here. Interestingly
solution has the same form as Eq.~1!, while only the bimaterial
matrix Tab is altered as follows:

Tab52I , ~Type 2 interface! (5)

Tab5~B̄b!21Bb, ~Type 3 interface! (6)

Tab5diagS B11
b 2B11

a

B11
b 1B11

a ,21D , ~Type 4 interface! (7)

Tab5diagS 21,
B22

b 2B22
a

B22
b 1B22

a D , ~Type 5 interface! (8)

where diag( ) denotes a diagonal matrix andI is the identity ma-
trix. We note here that the results obtained from Eqs.~5! and ~6!
coincide with those of Suo@3#. Also it is remarked here that th
matrix Tab represents the mismatch of elastic constants of
constituent materials and also includes the information about
interface.

Choi and Earmme@2# employed the alternating technique t
gether with the method of analytic continuation to analyze a s
gularity in a trimaterial with two parallel interfaces~Type 1! as
shown in Fig. 1~b!, resulting in
hanics
rial

-
l

ce,
be

the
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-
in-

f i~ziI!55
Ui j

ab(
n51

`

f j
n~ziI

a2m iI
ah1m jI

bh!, in Sa ,

(
n51

`

@ f i
n~ziI

b!1V̄i j
abf̄ j

n~ziI
b2m iI

bh1m̄ jI
bh!#, in Sb ,

Ui j
cbf j

0~ziI
c!1Ui j

cbV̄jk
ab(

n51

`

f̄ k
n~ziI

c2m jI
bh1m̄kI

bh!, in Sc ,

(9)

in which the recurrence formula forf i
n(z) is

f i
n11~z!5H f i

0~z!1V̄i j
cbf̄ j

0~z!, if n50,

V̄i j
cbVjk

abf k
n~z2m̄ jI

bh1mkI
bh!, if n51,2,3,... .

(10)

Equation~9! with Eq. ~10! is considered as the general solutio
for a singularity in an anisotropic trimaterial, each interface
which is one of Type 1–5 interfaces. Depending on the type of
interface atx25h ~andx250), all we have to do is to replace th
matrix Tab ~and Tcb) in Eqs. ~9! and ~10! by the corresponding
matrix given in Eqs.~4!–~8!.

Antiplane Deformation. For the antiplane deformation, thre
types of interfaces are considered as follows:

Type 1~perfectly bonded! :u3
a~x1!5u3

b~x1!,

Type 2~separated! :s23
b ~x1!50,

Type 3~rigid! :u3
b~x1!50.

Using the same procedure as in in-plane deformation, the gen
solution for an antiplane singularity regardless of the type of
terface is expressed in terms of the solutionf 3

0(z) for the same
singularity in a homogeneous medium as

f 3~z3!5H ~11Tab! f 3
0~z3

a!, in Sa ,

f 3
0~z3

b!1Tabf̄ 3
0~z3

b!, in Sb ,
(11)

for an anisotropic bimaterial~Fig. 1~a!!, @3#, and
MAY 2003, Vol. 70 Õ 447
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f 3~z3!5H ~11Tab!F~z3
a2m3

ah1m3
bh!, in Sa ,

F~z3
b!1TabF̄~z3

b22ahi !, in Sb ,

~11Tcb!@ f 3
0~z3

c!1TabF̄~z3
c22ahi !#, in Sc ,

(12)

for an anisotropic trimaterial~Fig. 1~b!!, @2#. Here,a5Im(m3
b) and

F~z!5(
n50

`

~TcbTab!n@ f 3
0~z12ahni!1Tabf̄ 3

0~z12ahni!#.

(13)

Depending on the type of interface atx25h ~or x250), the con-
stantTab ~or Tcb) becomes

Tab5
B33

b 2B33
a

B33
b 1B33

a , ~Type 1 interface! (14)

Tab521, ~Type 2 interface! (15)

Tab51 ~Type 3 interface!. (16)

For line force or screw dislocation at (x1
0,x2

0), the homogeneous
solution f 3

0(z) is given as

f 3
0~z3!5

q3

2p
ln~z32s3!, q352

b3

2B33
1

p3

2
i , (17)

wheres35x1
01m3x2

0. When both interfaces atx25h andx250 in
a trimaterial are rigid interfaces~Type 3! or separated interface
~Type 2!, that is,Tab5Tcb5T51 or 21, respectively, using the
homogeneous solution~17!, the solution given in Eqs.~12! and
~13! reduces to a closed form as

f 3~z3
b!5

q3

2p (
n52`

`

ln~z3
b2s3

b12ahni!

1T
q̄3

2p (
n52`

`

ln~z3
b2 s̄3

b12ahni!

5
q3

2p
lnH sinF p i

2ah
~z3

b2s3
b!G J

1T
q̄3

2p
lnH sinF p i

2ah
~z3

b2 s̄3
b!G J in Sb . (18)

By comparing the series solution~the first equality! with the
closed-form solution~the second equality! in Eq. ~18!, it is in-
ferred that the rate of convergence of the series solution dep
on the boundary condition at both interfaces through the cons
T as well as on the type of singularity throughq3 . That is, the
solution for line force withT51 ~Type 3! is more rapidly conver-
gent than that for line force withT521 ~Type 2!. This tendency
is reversed for a screw dislocation. It is also inferred from t
observation that the rate of convergence of the trimaterial solu
given in Eqs.~9! and ~10! for in-plane deformation may depen
on the boundary condition at both interfaces, the type of singu
ity, and the direction of singularity~e.g., the direction of Burgers
vector!, as already mentioned by Choi and Earmme@2#.

3 Concluding Remarks
It is shown in this paper that when the interfaces of an an

tropic trimaterial are one of the following types:~i! perfectly
bonded,~ii ! separated,~iii ! rigid, ~iv! separated without slip, and
~v! slipping interfaces, the elastic solution for a singularity in t
trimaterial has the same form as that for a singularity in a
material with perfectly bonded interfaces, but with the bimate
matricesTab andTcb properly altered. The rate of convergence
448 Õ Vol. 70, MAY 2003 Copyright © 20
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the trimaterial solution depends on the bimaterial matrix includ
the information about the interface and the type of the singula
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Michell’s General Solutions for
Torsionless Axisymmetric Problems
With Body Forces in Elasticity

Y. C. Lou

M. Z. Wang

Department of Mechanics and Engineering Science,
Peking University, Beijing 100871, People’s Republic of
China

In this note, it is pointed out that simple modified Michell’s ge
eral solutions may treat the torsionless axisymmetric proble
with both axial and radial body forces in elasticity and are mo
convenient in some cases contrast to Love’s solutions.
@DOI: 10.1115/1.1571857#

There are two kinds of general solution for the torsionless a
symmetric problem. One is Love’s solution, the other is Miche
solution. Both are complete,@1#. Using Love’s solution, Fung@2#
obtained the solutions of the problems with body forcesf z . Sim-
monds@3# solved the problems with both body forcesf z and f r
with a modified form of Love’s solution. It will be pointed out in
the following discussion that we can also use the modified Mi
ell’s general solution to solve the problems with both body forc
and for some cases it is more convenient to use Michell’s solut

Referring to circular cylindrical coordinates$r ,u,z%, a torsion-
less axisymmetric displacement field has the form

u5ur~r ,z!er1uz~r ,z!ez . (1)

Of course, we suppose that the underlying body is a body
revolution, and its half-meridional surface is denoted byG. In this
case, the displacement equation of equilibrium for homogene
isotropic, linear elasticity with body forces is read as

¹2u1
1

122n
¹~¹•u!52

1

m
f (2)
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30, 2002; final revision, November 11, 2002. Associate Editor: J. R. Barber.
03 by ASME Transactions of the ASME



where n is Poisson’s ratio,m is the shear modul,f is the body
force vector, which is given by

f5 f r~r ,z!er1 f z~r ,z!ez . (3)

The modified Michell’s solution is written as
l

e

r

t
J

o
e
t

f
o

c

Copyright © 2Journal of Applied Mechanics
u5¹2~erM !2
1

2~12n!
¹~¹•erM !1erF (4)

whereM is Michell’s potential andF exists only when body force
f z is not zero.

Substituting~4! into ~2! yields the equations
(5a)H S ¹22
1

r 2D S ¹22
1

r 2D M1¹2F1
1

122n

]

]r S ]F

]r
1

F

r D52 f r~r ,z!

1

122n

]

]z S ]F

]r
1

F

r D52 f z~r ,z!. (5b)
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g is
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Contrast to Love’s solution, it is more convenient to use Miche
solution when only body forcef r exists.

From ~5b!, we can get

F52~122n!r E
r 0

r E
z0

z 1

t
f z~ t,§!d§dt. (6)

The definite integral in~6! is over the half-meridional surfac
G. Thus the regionG must be bothz-convex andr-convex. The
case will happen for~2! of Simmonds@3#, too. WhenG is not
convex, we have to use two components of Galerkin’s vecto
Fung’s suggestion,@2#.
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A Note on the Estimation of Nonlinear
System Damping

P. J. Torvik
Fellow ASME
Professor Emeritus of Aerospace Engineering and
Engineering Mechanics, Air Force Institute of Technolog
1866 Winchester Road, Xenia, OH 45385.

System damping for a single mode in resonance is often estim
from a measurement of the bandwidth of the frequency resp
function. While the bandwidth is customarily measured betw
the half-power frequencies, it is also possible to choose any o
fraction of the maximum amplitude. If the damping is linear, i.e.
the loss factor is independent of amplitude, the same damping
be found with any such choice. While intuition might suggest t
the damping of a nonlinear system would be better estimated
a bandwidth taken closer to the maximum amplitude, this is sh
to be false.@DOI: 10.1115/1.1571859#
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The use of half-power bandwidths~the difference between the
two frequencies at 0.707 maximum amplitude! for the extraction
of estimates of the loss factor from resonant response curve
discussed in most elementary texts on vibration and has beco
staple in the procedures for modal testing,@1#. It is generally
understood that the use of this procedure invokes the assump
that the system acts as a single degree-of-freedom system an
all system elements are linear; in particular, that the dampin
linear, i.e., that the loss factor is independent of amplitude.

While it might appear that, when loss factors increase w
amplitude, estimates can be improved by taking bandwidths~ap-
propriately compensated! higher on the response curve, i.e.,
r-amplitude points, wherer is a convenient number in the rang
0.707,r ,1. Bandwidths at the half-power and 80% power fr
quencies are shown on a resonant response curve given as in
1. It is understood that the degree of experimental error introdu
in so doing will increase as the two frequencies to be differen
approach each other. Nonetheless, with data of sufficient quali
seems intuitively obvious that the use of larger values ofr should
improve the estimate of damping. It will be shown here that this
false.

Consider a single degree-of-freedom system having the
sponse.

A

XST
'A 1

~12 f 2!21~h0Am!2 (1)

where A is the magnitude of the complex amplitude of the r
sponse,X(t)5A exp(iVt), to an inputF(t)5F0 exp(iVt). In the
above, f 5V/v0 , v0 is the undamped natural frequency, an
XST5F0 /K, K being an effective stiffness. Equation~1! is written
for nonlinear structural damping with amplitude dependence m
eled by

h~A!5h0Am (2)

with m>0. For the linear system,m50. The response curve in
Fig. 1 is for structural damping withm51 andh050.001. For
viscous damping,h0 may be replaced by 2j0f , wherej is the
fraction of critical damping.

After rearranging Eq.~1! into the form

f 2516A~XST/A!22~h0Am!2 (3)

a relationship between the bandwidth and the damping at
maximum amplitude (f 51, or resonance! may be obtained.
Clearly, the maximum amplitudeAR occurs when the radical van
ishes, or

AR

XST
5

1

h0AR
m 5

1

h~AR!
. (4)h
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Then, if f 1 and f 2 denote the dimensionless frequencies where
amplitude is a fraction,r, of the peak amplitude, Eq.~3! becomes

f 1,2
2 516h~AR!A1/r 22r 2m. (5)

This bandwidth relationship is most neatly expressed in term
the difference of squared frequencies, or

h~AR!5~ f 2
22 f 1

2!/~2A1/r 22r 2m!. (6)

For lightly damped systems,f 2
22 f 1

2'2( f 22 f 1), leading~for m
50) to the familiar result for the half-power bandwidth thatD f
5h.

Fig. 1 Frequency response with bandwidths at 50% power and
80% power

Fig. 2 Estimation of measurement errors introduced by non-
linear damping
450 Õ Vol. 70, MAY 2003
the

of

For the linear case (m50), Eq. ~6! becomes

h5~ f 2
22 f 1

2!/~2A1/r 221!, (7)

which is the appropriate relationship for estimating loss fact
when using other than the half-power points, and is equivalen
other forms, as have been discussed elsewhere,@2#. However,
when Eq.~7! is used in the presence of an amplitude-depend
loss factor (mÞ0), it will give only an ‘‘apparent’’ loss factor.
The error so introduced may be determined from the ratio of E
~6! and ~7!, or

hTRUE/hAPPARENT5A1/r 221/A1/r 22r 2m. (8)

Values of m in the range of 0 to 1 are of particular interest a
has been observed,@3#, that common materials typically dissipat
energy according to the formD5JsN, with N falling between 2
and 3 at the values of stress normally allowed in design. As
stored energy is proportional to the square of stress, it follows
the ratio of dissipated to stored energy, and the loss factor for s
materials will have amplitude dependence with a power betwee
and 1. The ratio given in Eq.~8! is plotted in Fig. 2 for several
such values.

Intuition may lead one to expect that better estimates of
damping corresponding to the peak amplitude should result f
observations made closer to that resonant peak. Figure 2 dem
strates that this is not true. Rather, taking observations at la
values ofr and using Eq.~7! increases the error when dampin
increases with amplitude. One should rather take data at lo
ratios. Forr 50.707 andm51, the error is of the order of 20%
Not only do the errors increase for larger values ofr, but for the
structural designer they also become less conservative. An o
estimate of damping in the testing of a material or component
lead to an overestimate of the damping of the final system, po
bly giving rise to unexpectedly large resonant amplitudes in s
vice. In choosing a lower value ofr, one must also exercise cau
tion, as the influence of other modes may be expected to bec
more significant as the bandwidth is expanded, and measure
noise may be come more significant at the lower signal amplitu
Values of r of 0.707 and 0.577 have been given,@4#, as being
commonly used.

Once values of loss factor have been obtained over a rang
amplitudes by using Eq.~7!, the results may be plotted as log los
factor versus log amplitude. If a straight line provides a reas
able ‘‘fit,’’ the slope is the appropriate value for the exponent
Eq. ~2! and may be used in Eq.~8! to adjust the original results
But, since the necessary correction is smaller for lower value
r, and since the quality of results should improve with the co
comitant larger frequency difference~subject to possible influ-
ences of other modes and a lower signal/noise ratio!, lower values
of r are still to be preferred over higher.
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A Symmetric Boundary Element
MethodÕFinite Element
Method Coupling Procedure for
Two-Dimensional Elastodynamic
Problems

G. Y. Yu
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In this paper, a symmetric collocation boundary element met
(SCBEM)/finite element method (FEM) coupling procedure
given and applied to a two-dimensional elastodynamic proble
The use of symmetry for the boundary element method not
saves memory storage but also enables the employment of effi
symmetric equation solvers. This is especially important for BE
FEM coupling procedure. Compared with the symmetric Galer
boundary element method (SGBEM) where double-space inte
tion should be carried out, SCBEM is easier and faster.
@DOI: 10.1115/1.1571856#

1 Introduction
The traditional collocation boundary element method~TCBEM!

has been proven to be useful and robust. However, some unp
ant features hinder its broader applications. The most pertine
the lack of symmetry for some coefficient matrices, which ma
the computer code less efficiency, especially for the boundary
ement method/finite element method~BEM/FEM! coupling pro-
cedure where huge amounts of unknowns often exist in the fi
element method domain. Symmetric Galerkin BEM~SGBEM!
was first proposed by Sirtori@1# for linear elastic analysis, and
then used by many researchers in various applications,@2–4#. One
of the main problems for SGBEM is that one has to solve
hypersingular integrals appeared. Although numerous papers
been published to deal with the hypersingular integrals,@5–8#,
there are still many spaces that need more research works.
double-space integrations can increase the accuracy for SGB
but with a cost of computer time.

Through matrix manipulation, symmetric collocation BE
~SCBEM! formulation is derived in this paper. As only one spa
integration is involved and no hypersingularity appears,
SCBEM/FEM coupling procedure can overcome the defects
SGBEM/FEM while maintain its merits. The accuracy and val
ity for the symmetric coupling procedure are shown in a class
example.

2 Symmetric Coupling Procedure
The traditional collocation boundary element method~TCBEM!

formulation for two-dimensional elastodynamic problems can
written as,@9#,

HDun5GDpn1 (
m51

n21

GD
mnpm2 (

m51

n21

HD
mnum (1)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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whereum andpm are, respectively, the displacement and tract
vectors at timetm , m51,2,¯ ,n. Normally, HD5HD

nn and GD

5GD
nn are not symmetric. When the asymmetric boundary elem

method is coupled with the symmetric finite element method
coupling scheme will not be symmetric. Therefore, the followi
symmetrization procedure is used.

Multiplying Eq. ~1! by GD
T andHD

T , respectively, one can get

LD
GHun5LD

GGpn1 (
m51

n21

LD
GGmnpm2 (

m51

n21

LD
GHmnum (2)

~LD
GH!Tpn5LD

HHun1 (
m51

n21

LD
HHmnum2 (

m51

n21

LDT
HGmnpm (3)

where LD
GG5GD

T GD , LD
GH5GD

T HD , LD
HH5(HD)THD , LD

GGmn

5GD
T GD

mn , LD
GHmn5GD

T HD
mn , LDT

HGmn5(HD)TGD
mn , LD

HHmn

5(HD)THD
mn . LD

GG andLD
HH are symmetric matrices.

Double nodes cannot be used here if the tractions for both
these two nodes are unknown. For corner points, two nodes
small distance can be used. However, if traction for at least on
the double nodes is known, double nodes can also be used. W
a similar way with double nodes can be used to calculateHD so as
to increase the accuracy.

In order to get the symmetric boundary element method form
lation ready to be used in BEM/FEM coupling procedure, t
whole boundary for the boundary element method domain sho
be divided into three parts,G1—where displacements are pre
scribed,G2—where traction components are prescribed and
boundary element/finite element interfaceG i . Subscript ‘‘1,’’ ‘‘2,’’
and ‘‘i’’ are used to represent, respectively, the variables onG1 ,
G2 , andG i . Applying Eqs.~2! and~3! to G1 andG2 , respectively,
one gets:

@LD11
GH LD12

GH LD1i
GH #H u1

n

u2
n

ui
n
J

5@LD11
GG LD12

GG LD1i
GG#H p1

n

p2
n

pi
n
J

1 (
m51

n21

@LD11
GGmn LD12

GGmn LD1i
GGMn#H p1

m

p2
m

pi
m
J

2 (
m51

n21

@LD11
GHmn LD12

GHmn LD1i
GHmn#H u1

m

u2
m

ui
m
J (4)

@~LD12
GH !T ~LD22

GH !T ~LDi2
GH !T#H p1

n

p2
n

pi
n
J

5@LD21
HH LD22

HH LD2i
HH #H u1

n

u2
n

ui
n
J

1 (
m51

n21

@LD21
HHmn LD22

HHmn LD2i
HHmn#H u1

m

u2
m

ui
m
J

2 (
m51

n21

@LDT21
HGmn LDT22

HGmn LDT2i
HGmn#H P1

m

p2
m

pi
m
J . (5)

Applying both Eqs.~2! and ~3! to G i one gets
er
003 by ASME MAY 2003, Vol. 70 Õ 451
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@LDi1
GH LDi2

GH LDii
GH#H u1

n

u2
n

ui
n
J

5@LDi1
GG LDi2

GG LDii
GG#H p1

n

p2
n

pi
n
J

1 (
m51

n21

@LDi1
GGmn LDi2

GGmn LDii
GGmn#H p1

m

p2
m

pi
m
J

2 (
m51

n21

@LDi1
GHmn LDi2

GHmn LDii
GHmn#H u1

m

u2
m

ui
m
J (6)

@~LD1i
GH !T ~LD2i

GH !T ~LDii
GH!T#H p1

n

p2
n

pi
n
J

5@LDi1
HH LDi2

HH LDii
HH#H u1

n

u2
n

ui
n
J

1 (
m51

n21

@LDi1
HHmn LDi2

HHmn LDii
HHmn#H u1

m

u2
m

ui
m
J

2 (
m51

n21

@LDTi1
HGmn LDTi2

HGmn LDTii
HGmn#H p1

m

p2
m

pi
m
J . (7)

Combining Eqs.~4! to ~7! and move all unknowns to the left
one can get

F 2LD11
GG LD12

GH 2LD1i
GG LD1i

GH

~LD12
GH !T 2LD22

HH ~LDi2
GH !T 2LD2i

HH

2LDi1
GG LDi2

GH 2LDii
GG LDii

GH

~LD1i
GH !T 2LDi2

HH ~LDii
GH!T 2LDii

HH

G H p1
n

u2
n

pi
n

ui
n
J

5F 2LD11
GH LD12

GG

LD21
HH 2~LD22

GH !T

2LDi1
GH LDi2

GG

LDi1
HH 2~LD2i

GH !T

G H u1
n

p2
nJ

1 (
m51

n21 F LD11
GGmn LD12

GGmn LD1i
GGmn

2LDT21
HGmn 2LDT22

HGmn 2LDT2i
HGmn

LDi1
GGmn LDi2

GGmn LDii
GGmn

2LDTi1
HGmn 2LDTi2

HGmn 2LDTii
HGmn

G H p1
m

p2
m

pi
m
J

1 (
m51

n21 F 2LD11
GHmn 2LD12

GHmn 2LD1i
GHmn

LD21
HHmn LD22

HHmn LD2i
HHmn

2LDi1
GHmn 2LDi2

GHmn 2LDii
GHmn

LDi1
HHmn LDi2

HHmn LDii
HHmn

G H u1
m

u2
m

ui
m
J .

(8)

Equation~8! can be written in a more compact form as

AD0Xn5Yn. (9)
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As both LD
GG and LD

HH are symmetric matrices, the time doma
collocation boundary element method formulation given by~8! or
~9! is symmetric.

Equation~8! or ~9! is the relationship between distributed tra
tion and displacement, while the finite element method formu
tion represents the relationship between concentrate nodal
and displacement. Therefore, in order to couple with the fin
element method the unknown tractionpi

n in Eq. ~8! should be
converted to the equivalent nodal loadRi

n . The same space inter
polation function is used forpi

n in the boundary element metho
domain and the corresponding tractionpFi

n in the finite element
method domain on the interface. Subscript ‘‘F’’ represents the
variables in the finite element method domain, to distinguish
from those variables in the boundary element method dom
Therefore, the equivalent nodal load vector at timetn on the in-
terface can be written as

RFi
n 5FpFi

n (10)

for the finite element method, and

Ri
n5Fpi

n (11)

for the boundary element method.
Using the equilibrium conditionpFi

n 52pi
n one can get

pi
n5F21Ri

n52pFi
n 5F21~2RFi

n !, (12)

Substituting Eq.~12! into Eq.~8!, and considering the compatibil
ity condition,uFi

n 5ui
n , one can get

F 2LD11
GG LD12

GH 2LD1i
GGF21 LD1i

GH

~LD12
GH !T 2LD22

HH ~LDi2
GH !TF21 2LD2i

HH

2LDi1
GG LDi2

GH 2LDii
GGF21 LDii

GH

~LD1i
GH !T 2LDi2

HH ~LDii
GH!TF21 2LDii

HH

G H p1
n

u2
n

2RFi
n

uFi
n
J

5F 2LD11
GH LD12

GG

LD21
HH 2~LD22

GH !T

2LDi1
GH LDi2

GG

LDi1
HH 2~LD2i

GH !T

G H u1
n

p2
nJ

1 (
m51

n21 F LD11
GGmn LD12

GGmn LD1i
GGmn

2LDT21
HGmn 2LDT22

HGmn 2LDT2i
HGmn

LDi1
GGmn LDi2

GGmn LDii
GGmn

2LDTi1
HGmn 2LDTi2

HGmn 2LDTii
HGmn

G H p1
m

p2
m

pi
m
J

1 (
m51

n21 F 2LD11
GHmn 2LD12

GHmn 2LD1i
GHmn

LD21
HHmn LD22

HHmn LD2i
HHmn

2LDi1
GHmn 2LDi2

GHmn 2LDii
GHmn

LDi1
HHmn LDi2

HHmn LDii
HHmn

G H u1
m

u2
m

ui
m
J . (13)

In order to convert Eq.~13! into symmetric form, multiplying its
third row by 2(F21)T, one can get
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2LD11
GG LD12

GH LD1i
GGF21 LD1i

GH

~LD12
GH !T 2LD22

HH 2~LDi2
GH !TF21 2LD2i

HH

F21!TLGG 2 F21!TLGH 2 F21!TLGGF21 2 F21!TLGH H p1
n

u2
n

Rn J
F ~ Di1 ~ Di2 ~ Dii ~ Dii

~LD1i
GH !T 2LDi2

HH 2~LDii
GH!TF21 2LDii

HH

G Fi

uFi
n

5F 2LD11
GH LD12

GG

LD21
HH 2~LD22

GH !T

~F21!TLDi1
GH 2~F21!TLDi2

GG

LDi1
HH 2~LD2i

GH !T

G H u1
n

p2
nJ 1 (

m51

n21 F LD11
GGmn LD12

GGmn LD1i
GGmn

2LDT21
HGmn 2LDT22

HGmn 2LDT2i
HGmn

2~F21!TLDi1
GGmn 2~F21!TLDi2

GGmn 2~F21!TLDii
GGmn

2LDTi1
HGmn 2LDTi2

HGmn 2LDTii
HGmn

G H p1
m

p2
m

pi
m
J

1 (
m51

n21 F 2LD11
GHmn 2LD12

GHmn 2LD1i
GHmn

LD21
HHmn LD22

HHmn LD2i
HHmn

~F21!TLDi1
GHmn ~F21!TLDi2

GHmn ~F21!TLDii
GHmn

LDi1
HHmn LDi2

HHmn LDii
HHmn

G H u1
m

u2
m

ui
m
J (14)
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As all unknowns are on the left-hand side, Eq.~14! is the sym-
metric boundary element method formulation which can be u
directly to couple with the finite element method.

3 Numerical Example
The example depicted in Fig. 1, presented previously by M

sur @9#, consists of a one-dimensional rod under a Heaviside-t
forcing function, and has been chosen to be analyzed by SCB
FEM scheme. The displacements,u1 andu2 , were assumed to be
zero atx150, and the tractions were also taken as null atx250
and x25b, for any time t. At x15a and t50, a load p1
5pH(t-0) was suddenly applied and kept constant until the e
of the analysis~E is the Young’s modulus, Poisson coefficient w
considered null!. 128 finite elements and 32 boundary eleme
with the lengthL j were used to discretize each half into which t
domain was subdivided~see Fig. 1!.

Figures 2 show time histories of the displacement compon

Fig. 1 One-dimensional rod under a Heaviside-type forcing
function: topology, load, and discretization
Journal of Applied Mechanics
ed

n-
pe
M/

nd
s
ts
e

ent

u1 and the stress components11 at point D(a/2,b/2) from
SCBEM/FEM. The parameterb5c1Dt/L j was kept constant and
equal to 0.6 in the analyses. Comparing with the analytical resu
one can see that reasonable results can be obtained from
SCBEM/FEM procedure given in this paper for elastodynam
problems.

4 Conclusions
SCBEM/FEM coupling procedure has been given and appl

to a two-dimensional elastodynamic problem. Symmetry of co
ficient matrix can save up to 50% memory storage, and enable
employment of efficient symmetric computation techniques t

Fig. 2 Time histories for the response at point D„aÕ2,b Õ2… from
SCBEMÕFEM procedure for bÄ0.6 and uÄ1.4
MAY 2003, Vol. 70 Õ 453
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can subsequently save the computer time, especially for the
pling procedure. There is no restriction for the SCBEM/FEM co
pling procedure; it can be easily applied to scalar wave proble
and three-dimensional problems.
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Dynamic Fracture in Brittle Solids at
High Rates of Loading

Y.-Q. Zhang
Protective Technology Research Center, School of Civi
and Environmental Engineering, Nanyang
Technological University, Singapore 639798

H. Hao
Department of Civil and Resource Engineering,
University of Western Australia Nedlands,
Western Australia 6009

This paper presents a dynamic damage model for predicting f
ture and fragmentation of brittle materials subjected to loads w
high loading rates. This model is based on the mechanics of
crocrack nucleation, growth, and coalescence to formulate
evolution of damage. The damage in the model is assumed t
isotropic and is a function of time and applied stress. The mo
provides a direct, explicit, and quantitative method to determ
the rate-dependent fracture stress and fragment size generate
crack coalescence in the dynamic fragmentation process. It c
siders the experimental facts that a brittle material does not fa
the applied stress is lower than its static strength and certain t
duration is needed for fracture to take place when it is subjec
to a stress higher than its static strength. Comparisons betw
theoretical predictions and test data are made and shown to b
good agreement.@DOI: 10.1115/1.1571854#

1 Introduction
The dynamic fracture and fragmentation of brittle materials

a wide range of physical relevance including, but not limited
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such phenomena as rock comminution, the milling of powde
hard particle impact of ceramic and ceramic composite structu
and the penetration of ceramic armour. When a brittle materia
under high-rate deformation, large stresses are generated in a
tively short time. Thus, many cracks are nucleated and they pro
gate simultaneously in the material, ultimately coalescing a
separating the solid into fragments. High-rate loading occurs
wide range of technologically important applications includi
such obvious examples as rock blasting, shattering of glass,
armor penetration. When the loading rate is high, the mechan
response of a material is generally different from what it is a
low-loading rate. Such rate dependence is observed for nearl
the brittle materials including rock, ceramics, and glasses,@1#.

When a brittle material is subjected to a tensile stress it
support that stress and does not fail unless the value of the s
is larger than its static strength. Furthermore, it will not fail eith
even though the stress is well above the static strength but
time duration is very short. In dynamic loading, the stress c
exceed the material strength, but it may not damage the mater
its duration is too short. Dynamic damage is accumulated a
function of time and applied stress. From the viewpoint of mic
crack activation and growth, microcracks may be activated b
high stress level and show a tendency for further growth. Ho
ever, actual growth is possible only when the time duration of
stress is long enough,@2#.

It is important to understand the mechanisms of dynamic da
age and fragmentation. A lot of theoretical models intended
correlate the features of dynamic fracture and fragmentation h
been suggested. Shockey et al.@3# have developed models base
on the activation, growth, and coalescence of inherent distr
tions of fracture-producing flaws, predicting crack and fragm
size spectra resulting from blast loading. Grady and Kipp@4# pre-
sented a description of dynamic fracture and fragmentation
rock mass with emphasis on the strain-rate dependence of m
surable fracture properties. Taylor et al.@5# developed a damage
model to simulate stress-wave-induced rock fracture during bl
ing based on the analysis of cracked systems on a contin
level. In the continuum models,@4,5# it is assumed that microc
racks initiate and grow immediately when the strain becomes
sile. Based on energy balance principles, many models which
vide a rational basis for prediction of fragment size in
fragmentation event have been developed,@6–8#.

In this paper, a constitutive model for the dynamic damage
fragmentation of brittle materials is presented. The damage in
model is assumed to be isotropic and is a function of time a
applied stress. The model provides a direct, explicit, and qua
tative method to determine the rate-dependent fracture stress
fragment size generated by crack coalescence in the dynamic
mentation process. It takes account of the experimental facts
a brittle material does not fail if the applied stress is lower than
static strength and certain time duration is needed for fractur
take place when it is subjected to a stress higher than its s
strength.

2 Damage
Microscopic crack growth results in stiffness and strength d

radation of loaded structures, which is measured by the introd
tion into the constitutive equations of a damage variable. For
tropic damage, it will be defined as a scalar parameterD. Then in
accordance with the strain equivalence principle, the stress-s
relation can be expressed as

s5E~12D !« (1)

whereE is the Young’s modulus for the undamaged virgin ma
rial, s is a tensile stress, and« is a tensile strain.

Grady and Kipp@4# followed Walsh’s approximate microstruc
tural theory of the elastic properties of fractured rock,@9#, and
defined the scalar variable of the damageD in terms of the volume
of idealized penny-shaped cracks in the material as
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where N is the number of cracks per unit volume andV
54/3pr 3 is the spherical region surrounding the penny-sha
crack of radiusr which approximates the stress-relieved volum
due to the traction-free boundary of the crack.

As certain time duration is needed for fracture to take pla
when a brittle material is subjected to a stress higher than its s
strength, the evolution of damage can be determined by the n
ber of cracks which activate at the timet as follows:

D~ t !5E
tc

t

Ṅ~s!V~ t2s!ds (3)

where tc is the time duration needed for the tensile strain« to
reach the critical value«cr5sst /E, in which sst is the static
tensile strength, and the crack density increase

Ṅ5a^«2«cr&
b (4)

which is similar to that defined by Yang et al.@10#. In Eq. ~4!, the
angular bracket̂•& denotes that the function is defined by^x&
5(uxu1x)/2, anda andb are material parameters.

As for the volumeV(t2s), it is determined by a microstruc
tural law for the growth of cracks, which are activated at p
time s,

V~ t2s!5
4

3
pr 35

4

3
pcg

3~ t2s!3, (5)

wherecg is the crack growth velocity and generally 0,cg,cl (cl
is the elastic wave speed!, @8#.

The derivative of Eq.~5! is based on the assumption that
soon as cracks activate, the growth velocity reachescg very
quickly. Thus substituting Eqs.~4! and ~5! into Eq. ~3!, we have

D~ t !5
4

3
apcg

3E
tc

t

^«2«cr&
b~ t2s!3ds. (6)

A simple example is the case with a constant strain loading r
i.e.,«(t)5 «̇0t, where«̇0 is a constant strain rate. Substituting th
into Eq. ~6! gives an expression for damage growth

D~ t !5
4

3
apcg

3«̇0
bE

tc

t

^s2tc&
b~ t2s!3ds5m«̇0

b~ t2tc!
b14 (7)

where the relationtc5«cr / «̇0 is used, and

m5
8pcg

3a

~b11!~b12!~b13!~b14!
, (8)

which is seen to be a constant, depending on the mate
properties.

3 Fracture Stress and Fragment Size Predictions
If the tensile strain and damage scalar corresponding to

fracture stresssF are denoted by«F andDF , respectively, from
Eq. ~1! we have

sF5~12DF!E«F (9)

where «F5 «̇0tF , and tF is the total time to reach the fractur
stress. From Eq.~7!,

tF2tc5S DF

m D 1/~b14!

«̇0
2b/~b14!. (10)

Combining Eqs.~9! and ~10!, and using the relation«cr5 «̇0tc ,
the fracture stress at a certain strain rate in uniaxial tensile ca
obtained as
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sF5~12DF!sst1E~12DF!S DF

m D 1/~b14!

«̇0
4/~b14!. (11)

Dependence of the fracture stress on strain rate is provided by
above equation. Since fracture stress for many brittle mater
such as rock and concrete depends on the cube root of the s
rate,@7,11#, b can be taken as equal to 8. Combining Eqs.~8! and
~11!,

a5
DF

n
«̇0

4S E~12DF!

sF2~12DF!sst
D b14

(12)

where

n5
8pcg

3

~b11!~b12!~b13!~b14!
. (13)

Fragments are associated with crack initiation, propagation
coalescence, thus it is necessary to know the crack size in ord
predict the fragment size. For this reason, the damage define
Eq. ~3! is given in terms of the distribution of crack size

Fig. 1 Fracture stress for different values of applied strain rate

Fig. 2 Dominant fragment size for different values of applied
strain rate
MAY 2003, Vol. 70 Õ 455
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D~ t !5E
0

cg~ t2tc!

v~r ,t !dr (14)

where

v~r ,t !5
4pr 3

3cg
a«̇0

b~ t2tc2r /cg!b (15)

is the damage or crack volume fraction distribution.
Fragmentation is defined to occur when the damage

D~ t f !51, (16)

which corresponds to fracture coalescence at timet f . At fracture
coalescence it is assumed that the fragment sides are forme
the fracture faces. Noting that the crack radiusr 5L/2 with L
being the nominal fragment size, the fragment size distribut
can be obtained as follows:

F~L !5
1

2
v~L/2,t f !. (17)

Combining Eqs.~15! and ~17!, we have

F~L !5
paL3

12cg
«̇0

b@ t f2tc2L/~2cg!#b. (18)

It is evident that the fragment size distribution is also depend
on the strain rate. To determine the dependence on the strain
of the dominant fragment size~fragment size corresponding to th
largest volume fraction of material!, the fragment size distribution
F(L) can be maximized with respect to the fragment sizeL. It is
found that the fragment size distributionF(L) has a maximum
when

Lm5
6cg

b13
~ t f2tc!. (19)

Combining Eqs.~7! and ~16! gives

t f2tc5m21/~b14!«̇0
2b/~b14! . (20)

Substituting Eq.~20! into Eq. ~19!, we have

Lm5
6cg

b13
m21/~b14!«̇0

2b/~b14! . (21)

Fig. 3 Stress versus strain over three orders of magnitude of
strain rate
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This is the expression for the dependence of dominant fragm
size on the strain rate.

4 Application
In this section, the response of oil shale with kerogen cont

approximately 80 ml/kg subjected to a tensile stress is studie
verify the above theoretical derivations. The representative pr
erties of 80 ml/kg oil shale are: elastic modulusE518 GPa, den-
sity r52.0 Mg/m3, and elastic wave speed ofcl53.0 km/s, @4#.
In this study, the static tensile strength is assumed to be 5 M

Using the above oil shale properties, the material paramete
the model will be determined for oil shale. The parameterb is
taken to be equal to 8 so that the fracture stress is cube
dependent on the loading rate. According to the numerical inv
tigations and some test results of brittle materials under high
loading, @10,12#, the damage value is about 0.22 when the d
namic tensile stress reaches the dynamic failure stress. If the s
rate of quasi-static experiments is assumed to be 1022/sec and the
crack growth velocitycg is 1300 m/sec as adopted by Grady a
Kipp @4#, the corresponding value of the parametera calculated
by Eq. ~12! is about 8.8531033/m3sec.

Thus from Eqs.~11! and ~21!, the fracture stress and the frag
ment size can be predicted by using the determined parame
The theoretical predictions are compared with the experime
data provided by Grady and Kipp@4#, which is, respectively,
shown in Fig. 1 and Fig. 2. As can be seen, the predicted value
the fracture stress and the dominant fragment sizes agree re
ably well with the test data.

Figure 3 shows the stress-strain relation for the oil shale o
three orders of magnitude of the strain rate. It can be seen tha
peak stress before strain softening increases with the strain r

Fragment distributions calculated from Eq.~18! for the three
constant strain rates are shown in Fig. 4. Fragment sizes a
highest strain rate of 104/sec are very small with a dominant siz
of about 0.63 mm. On the other hand, at the lowest strain rat
102/sec the dominant fragment size is about 13.6 mm.

5 Conclusions
A model for dynamic damage and fragmentation of brittle m

terials has been developed. It emphasizes the strain-rate de
dence of measurable fracture properties such as the frac
strength and fragment size. The model considers the follow
experimental facts:~1! a brittle material does not fail if the applie
stress is lower than its static strength;~2! when a brittle material is

Fig. 4 Fragment distributions corresponding to different con-
stant strain rates
Transactions of the ASME
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subjected to a stress higher than its static strength a certain
duration is needed so that the fracture can take place.

This model is essentially based on the mechanics of microc
nucleation, growth and coalence to formulate the evolution
damage. The model provides a direct, explicit, and quantita
method to determine the rate-dependent fracture strength and
ment size generated by crack coalescence in the dynamic
mentation process. The theoretical predictions are compared
the experimental data, and it is found that the predicted value
the fracture stress and the dominant fragment sizes agree re
ably well with the test results.
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