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Introduction tures. For the active property tuning method SMA wires can be

. . . . d1irectly bonded to the host structure, while for the active strain
The use of different composite materials has been contlnuousx . .
energy tuning method they can be fully bonded, or put into

growing In recent years._AIthql_Jgh many gppllcatlons fqr COMPOYIaeves and then attached to the host structure at strategic points,
ite materials have been identified, extensive research is still be”ﬁgorder to eliminate the high shearing stresses which arise from
carried out in order to expand this field. New materials and tec jis form of activation. Rogers et d16] showed that significant
nologies have _bee_n researched, enabling more original af‘d mgﬁ%nges in natural fréquencies and modes of vibration can be
qdvanced applications. One.such.nelw appllca.tlon IS thg N9 ieved for simply supported plates with integrated SMA wires,
tion of shape memory materials within composite materials. and also stated that the use of the active strain energy tuning
gethod leads to much better results than the use of the active
: ' ; roperty tuning method. Changes in natural frequencies of fully
lus, [1,2], da_mpmg capaC|_t){3,4], as well as a great capacity forclamped composite beams with integrated SMA wires were inves-
th.e generation of Iargg internal forcef). ]ntegratmg SMAS. tigated analytically and experimentally by Baz et[8]. Baz et al.
within composite material structures potentially allows the activgrj\ved that SMA wires embedded into composite beams can be
control of the static and dynamic behavior of the integrated strugyccessfully used for controlling their natural frequencies. The
tre. PreC|§e tunlpg of SMA co_mponent§,7j, .enables the CON- influence of different initial strain levels, as well as temperature
trol of certain static and dynamic characteristics of composite Mafects due to the activation of the SMA wires, were also consid-
terial structures, notably deflection and shape, natural frequencigsy in their study. Baz et 49] also investigateéi the use of SMA
and modes of vibrations, amplitudes of forced vibrations, and al3gmponents for shape control of composite beams. They demon-
their damping properties. SMA components embedded into, Qfateq that SMA components in the form of strips, previously
bonded to, composite material structures can be utilized in Woyined for the two-way shape memory effect, and then embedded
different ways. The first implementation is in the use of the activgii, composite beams, can be used for the shape control of such
property tuning method$, 7], which only exploits changes in the gy,ctyres. The natural frequencies of composite beams modified
stiffness of the SMA components during their activation. In thg, s manner were also significantly affected. Lee and [
active strain energy tuning methde, 7], the shape memory effect i estigated the buckling and post-buckling behavior of simply
is exploited differently. In this technique the activation of previg pported and fully clamped composite plates with embedded
ously pseudo-plastically elongated SMA components integrateqa wires. They found that SMA wire activation can increase the
within appropriate composite material structures of interest, leadical load of composite plates, but this effect is a function of the
to the generation of high recovery stress@e Table 3. relative location of the SMA wires, and also the buckling direc-

been published in the literature. For example, Rogers §6&l. cqntilevered beams. Using compressive forces generated by the
presented concepts for using SMA wires for the control of naturgh;a wires and concentrated moments from the piezoceramic ac-
geq#err:c'es and modes of V|.brat|onds of simply supported plat§§ators they managed to control the higher vibration modes of a
oth the active property tuning and active strain energy tuningyntjieyer beam and also the second mode of vibration of a simply
methods were considered in their work. They also discussed t‘é’l?pported beam. Song et fL2] used SMA wires for active po-
different techniques for bonding SMA wires to composite StfUGjtion control of a honeycomb structure composite beam. They
T Comibuted by the Abolied Mechanics Division offE A © demonstrated, numerically and experimentally, that SMA wires
ontributes yt e Applie: echanics Division O MERICAN CIETY OF i H H
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- can be used .for very accurate a.nd effective momton.n.g of the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 20,beam shape, in the Case.Of a Cant”ever boundary qondltlon. QSta'
2001; final revision, June 10, 2002. Associate Editor: N. C. Perkins. Discussion 6mowicz et al[13,14] studied the dynamic and buckling behavior
the lzal:?\; Shf?“'d b|e angfeS_Sed to ﬁ:e| Editc_)fv Prof. Ffjobeft '\_/'t)-/ Mfcéfl'«‘l_'?kingv DSEPQBT‘ various composite plates, reinforced by SMA wires. They suc-
ment O echanical an nvironmental Engineering, University o allfornla—san : H H
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a?grssmlly Conflrm.ed that SMA wires can be. used to influence the
final publication of the paper itself in the ASMEOURNAL OF APPLIED MECHAN- natural fre‘_quenC'eS and the _therm_al buckling of such Str_UCtures-
ICS. Ostachowicz and CartmdlL5] investigated the flutter behavior of
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Table 1 Mechanical properties of composite material compo- tigate certain aspects of the dynamic behavior of a multilayered
nents and SMA wires composite plate with embedded SMA wires. In order to accom-
plish this a new finite element is proposed for modeling multilay-

Material voung's Modulus _ Poisson's Ratio Density ered, composite plates—see the Appendix for more details. It
Elpoxy resin g.él?,GGPa 00&))335 21820500b0kk /m should be noted that although all the mechanical influences men-
Aluminum 70. Pa . . m i i i i -
Glass Tbors 655 Gha 0.3 5250.0 LA/m tlor:ed 8rﬁV|ou§I]y havle l;feertl |r;]corporatt%d mt(i tlzle m()tdellng, th?r

Kevlar fibers 130.0 GPa 0.22 1450.0 kg/m Mal and hygrothermal efiects have not been taken into account in
Graphite fibers 275.6 GPa 0.20 1900.0 ka/m this study. It is fair to say that in some practical applications these
Boron fibers 399.6 GPa 0.21 2580.0|l: //m additional effects could have a significant influence on the behav-
SMA—Martensite 26.3 GPa 0.30 6448.1 kg/m i i -
SMA A Stonie 670 Cpa 030 84481 K ior. For the research presented in this paper thermal and hygro

thermal phenomena were neglected mainly due to the fact that the
necessary physical properties for this sort of analysis relating to
different composite material components are not currently avail-
able in the literature, and provision of this data was well outside
a composite plate in a supersonic airflow. In their work theghe scope of this particular funded study.
showed that substantial modifications can be achieved to the dy-
namic behavior of the plate by means of the SMA wires, and also
that flutter frequencies of the plate can be significantly increased. ) ) )
Results presented in the literature indicate many possible apHoMposite Plate With SMA Wires
cations for SMA components in the active control of the static and Figure 1 shows a multilayered composite plate with embedded
dynamic behavior of composite material structures. However,SMA wires. This particular plate is of length 500 mm, width 500
more detailed study is required for a complete and rigorous umm, and thickness 9 mm, although these dimensions are by no
derstanding of this behavior because the results presented in ifigans critical. It is assumed that the plate consists of 12 layers of
literature invariably refer to somewhat specific cases. This, the@mposite material, comprising, in turn, of two SMA/epoxy layers
fore, is the motivation behind this paper. and ten graphite/epoxy layers. The orientation of the reinforcing
Continuing with this review of appropriate literature it is intergraphite fibers and the SMA wires for each layer is defined by the
esting to note that Rogers et §] only examined SMA/epoxy anglea. It is also assumed that the SMA/epoxy layers are placed
composite plates, for which the relative volume fraction of SMAymmetrically across the cross section of the plate, as depicted in
wires was very high. The behavior of such plates is determined Byy. 1, in the form of two outer layers. The thickness of each
the high ratio of the Young’s modulus of the SMA to that of thesMA/epoxy layer is 0.5 mm, and the corresponding relative vol-
epoxy matrix, and also by the high relative volume fraction of thgme fraction of the SMA wires is 0.57. Additionally, the SMA
SMA wires. The same assumption regarding the high relative valires stay fully bonded within each SMA/epoxy layer of the plate.
ume fraction of SMA components was made by Baz e{@, The relative volume fraction of the graphite fibres within the inner
who investigated glass/epoxy composite beams with embeddg@phite/epoxy layers is 0.5, and the thickness of each graphite/
SMA strips. Furthermore, Baz et 4B,9] investigated composite epoxy layer is 0.8 mm. The ply stacking sequence of the plate is
beams of very low thickness-to-length ratio. Although such strugg°/(+ 45°)s/0°].
tures are characterized by very good static and dynamic perforinitially a convergence analysis was carried out whereby the
mance when the SMA components are activated, they tend to hagsults obtained from the finite element method using the new
very few engineering applications due to their low stiffness andrmulated multilayered composite plate element, were verified
low critical loads. Lee and Legl0] studied the buckling and against the exact solutiof16,19, for different mesh densities.
post-buckling behavior of composite plates with embedded SMgimply supported boundary conditions of the pléte., where all
wires, for which the assumed values for activation recoverje edges are simply supporjedere chosen to carry out this test.
stresses were very close to their ultimate tensile strength. The first six bending natural frequencies of the plate, as well as
From the foregoing it can be seen that the static and dynani critical load in thex-direction, were investigated as a function
behavior of composite material structures with embedded SM# the mesh density. It was assumed that the SMA wires should
components strongly depends on the following factors; thot be activated in this particular case. The results obtained are
Young's modulus of the SMA to the Young's modulus of the represented in Table 2.
inforcing fibers(glass, Kevlar, graphite, boron, etcthe relative |t can be seen from the results presented in Table 2 that a very
volume fraction of the SMA components, the relative volumgood accuracy is obtained at relatively low mesh densities for the
fraction of the reinforcing fibers, structural geometry, and the lo-
cation and orientation of the SMA components within their host
structures, temperature, moisture, etc. It should be noted that con-

trary to Rogers et all6] and Baz et al[9], for most advanced Layers with
composite materials the ratio of the SMA Young’'s modulus to thi SMA Wires
of the reinforcing fibers is low—see Table 1 for referendd— \ ! z

18]. Moreover, the high relative volume fraction of the SMA com{ [~
ponents is not really desirable due to the fact that the therm\ ¢
effect of resistive heating during SMA activation is very likely tc \
result in the softening of the composite material. However, th
effect can be easily avoided by an appropriate selection of t
SMA transformation temperatures, which can normally be a
justed accurately. For commonly available SMésfer to Shape
Memory Application, Inc. at http://www.sma-inc.corthe trans-
formation temperatures can remain within a fully controllabl
temperature range from as low a$3°C to —5°C to as high as 7
59°C to 121°C, with a total hysteresis span of 26°C to 46°C in tt
case of binary alloys. The hysteresis span can be further redu
to 10°C by the addition of copper, or, alternatively, enhanced to
100°C by the addition of niobium, together with further alloyingrig. 1 A multilayered composite plate with embedded SMA
In this paper the finite element method has been used to invesres
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Table 2 An analysis of the convergence of the finite element results for a simply supported plate (SMA wires not activated )

Mesh Density Mode | Mode II Mode IlI Mode IV Mode V Mode VI Nerit”
2x2 179.28 Hz 417.06 Hz 422.83 Hz 741.94 Hz 763.69 Hz 938.27 Hz —540.28 kN/m
3x3 178.60 Hz 408.23 Hz 414.31 Hz 710.36 Hz 756.11 Hz 772.93Hz —536.63 kN/m
4x4 178.39 Hz 407.54 Hz 413.65 Hz 706.31 Hz 750.25 Hz 767.25Hz —535.37 kKN/m
5x5 178.29 Hz 407.21 Hz 413.32 Hz 704.53 Hz 749.98 Hz 767.03Hz —534.81 kN/m
6x6 178.24 Hz 407.03 Hz 413.14 Hz 703.62 Hz 749.74 Hz 766.82 Hz —534.52 kN/m
X7 178.22 Hz 406.92 Hz 413.04 Hz 703.10 Hz 749.58 Hz 766.67 Hz  —534.34 kN/m
8x8 178.20 Hz 406.85 Hz 412.97 Hz 702.77 Hz 749.48 Hz 766.58 Hz  —534.23 kN/m
9x9 178.18 Hz 406.80 Hz 412.92 Hz 702.55 Hz 749.41 Hz 766.52 Hz —534.15 kN/m
10x10 178.17 Hz 406.77 Hz 412.89 Hz 702.40 Hz 749.37 Hz 766.47 Hz  —534.10 kN/m
Exact CPP 179.06 Hz 411.37 Hz 417.65 Hz 716.26 Hz 764.57 Hz 78251 Hz —539.09 kN/m
Exact FSDT 178.19 Hz 406.97 Hz 413.09 Hz 702.65 Hz 750.37 Hz 767.52Hz —533.87 kN/m

YN is the critical load of the plate calculated in tRedirection

dClassical plate theor§20,21]

3First-order shear deformation thedi30,21]

Sl
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Fig. 2 Modes of vibration of a simply supported plate (SMA

wires not activated )
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Fig. 3 Modes of vibration of a two-sided-clamped plate
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Fig. 4 Modes of vibration of a fully clamped plate
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(SMA wires

(SMA

proposed new plate finite element. Because of this the following
calculations have been undertaken for the plate divided up into 64
plate finite elementémesh density 88).

In general three different types of plate boundary conditions are
discussed in this paper, these being simply suppdited where
all the edges are simply supporiedwo-sided clampedi.e.,
where the two edges parallel to tit@xis are clampéedand fully
clamped(i.e., where all the edges are clamjpethe results of the
numerical calculations presented in this work are related to par-
ticular modes of plate vibration, and these are presented in Figs.
2-4 for each type of boundary condition. The performance of the
active property tuning method and the active strain energy tuning
method are also critically compared. In the case of the active
strain energy tuning method the assumed recovery stress level for
the SMA wires is equal to 172.1 MP@fter Dynalloy, Inc.—
http://www.dynalloy.com Certain mechanical properties used for
the graphite/epoxy composite and the SMA wires are presented in
Table 1. It should be mentioned here that the relative quantities of
the natural frequencies and the critical loddeting that only the
critical load of the plate in the-direction is investigatedpre-
sented in this paper, are defined as ratios of the values of these
quantities, calculated for the plate when the SMA wires are acti-
vated (for both the active property tuning method and the active
strain energy tuning method, respectivelio the corresponding
values when the SMA wires are not activated.

Numerical Calculations

In the first numerical example the natural frequencies and the
critical load of the plate are investigated as a function of plate
dimensions. The numerical results obtained for the active property
tuning method, and the active strain energy tuning method, for
different values of the length-to-width ratids|B, of the plate are
illustrated in Figs. 5-7 inclusive. It should be mentioned that
during the calculations the total area of the plate stays constant, so
the total mass of the plate is also constant and remains unaffected
by changes in the plate dimensions. From the results presented in
Figs. 57 it is clearly seen that for the simply supported type of
boundary condition greater relative changes in the plate’s natural
frequencies, and the critical load, are observed towards smaller
length-to-width ratiosL./B. In the case of the two-sided-clamped
boundary condition the observed behavior is different. A greater
general plate performance can be noted for larger values of the
length-to-width ratios]./B.

However, it should also be appreciated that for both types of
boundary conditions those natural frequencies for which the nodal
lines of the modes are perpendicular to the orientation angle of the
SMA wires are the most significantly affected. These are mode Ill
and mode VI for the simply supported plate, and mode | and mode
IV for the two-sided-clamped plat@lso see Figs. 2—3 for more
detailg. Furthermore, for the active strain energy tuning method
the changes in the natural frequencies and the observed critical
load are bigger than for the active property tuning method, and the
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Fig. 5 Natural frequencies of a (a) simply supported and (b) two-sided-clamped, plate versus the length-
to-width ratio (active property tuning method )

lower modes are the most noticeably affected ones. Additionallygls the results show a strong influence of the thickness-to-length
for the simply supported plate certain changes in the bucklimgtio H/L on the natural frequencies and the critical load of the
modes can be observed, as depicted in Fig. 7. In this case fhate. The performance of the pldggeater relative changes in the
buckling mode of the plate changes from mode | to modéskle natural frequencies and the critical lgad greater for smaller
Fig. 2), when the length-to-width ratib/B increases. It should be thickness-to-length ratios, and this is related to the fact that when
emphasized here that for the case when the SMA wires are tio¢ thickness of the inner graphite/epoxy layers decreases, the
activated the transition point between the modes is point Atiffness of the outer SMA/epoxy layers becomes dominant. This
whereas it is point B when the SMA wires are activated. Theffect is especially strong at very small thickness-to-length ratios
transition of the buckling mode influences the relative critical loadf the plate. Moreover, it should also be noted in this case that for
of the plate, and this increases rapidly over the transition regitime active strain energy tuning method the changes in the natural
due to the change in the buckling mode. Such behavior is noéquencies and the critical load, in general, are greater than for
observed in the case of the two-sided-clamped plate. the active property tuning method. An additional influence in the

In the following example the influence of the relative platédorm of boundary condition dependence is observed.
thicknessH/L is investigated. It is assumed that the thickness of The next example concerns the influence of the volume fraction
the inner graphite/epoxy layers can vary, while the thickness of the reinforcing graphite fibers on the plate’s dynamic behavior.
the outer SMA/epoxy layers remains constant. The results of ni-general assumption of this part of the work is that the properties
merical calculations for the relative changes in the natural fref the outer SMA/epoxy layers remain constant, whilst the relative
guencies and the critical load, as a function of the relative platelume fraction of the reinforcing graphite fibers in the inner
thicknessH/L, are given in Figs. 8—10 inclusive. For both methgraphite/epoxy layers have been allowed to vary.
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Fig. 6 Natural frequencies of a (a) simply supported and (b) two-sided-clamped, plate versus the length-
to-width ratio (active strain energy tuning method )

In Figs. 11-13 results are illustrated for relative changes in tlier the orientation angle of the graphite fibers between subsequent
natural frequencies and the critical load of the plate. The numeitimer graphite/epoxy layers. The ply stacking sequence of the
cal calculations show that for both the active property tuning amdate can therefore be defined B8°/(a/(a+90°))s/0°]. The
active strain energy tuning methods the plate performance iresults presented in Figs. 14—16 show the influence of the orien-
creases when the relative volume fraction of the graphite fibeetion anglea of the reinforcing graphite fibres on changes in the
within the inner graphite/epoxy layers decreases. This effectnatural frequencies and the critical load for two boundary condi-
directly linked to the ratio of the longitudinal Young’s modulus oftion of the plate considered. It is obvious from the results stated in
the outer SMA/epoxy layers to the same quantity for the innétigs. 14—16 that for the chosen ply stacking sequence the perfor-
graphite/epoxy layers. In the case when the relative volume frawance of the plate varies with the modes of vibration and the type
tion of the graphite fibres is low, or equal to zero, the stiffnessf boundary conditions. Generally, the greatest performatinee
contribution of the outer SMA/epoxy layers of the plate becomegeatest relative changes in the natural frequencies and the critical
predominant, and the observed changes in the natural frequendies) is obtained for the modes whose nodal lines are perpendicu-
and the critical load are therefore maximal. lar to the orientation angle of the SMA wires within the outer

The influence of the orientation angle of the reinforcing graptf8MA/epoxy layers of the plate. Consequently, the smallest perfor-
ite fibers on the natural frequencies and the critical load of theance is obtained for the modes whose nodal lines are parallel to
plate is investigated next. It is assumed here that the orientatitnat referencésee also Figs. 3—4 for more details
anglea of the graphite fibers within the inner graphite/epoxy lay- Additionally, in the case of the active strain energy tuning
ers can vary, while the properties of the outer SMA/epoxy layersethod a further increase in the plate performance is obtained
remain constant. In this case the constant value of 90° is assunfrexin the in-plane load generated by the recovery stresses during
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Fig. 7 The critical load of a (a) simply supported and (b) two-sided-clamped plate versus the length-to-
width ratio

activation of the SMA wires. However, this additional increase afatural frequencies and the critical load of the plate are minimal.
the plate performance mostly affects the first natural frequencyThis effect is related to the fact that the bending contribution of
Finally, a study has been made of the influence of the locati@ach layer of the plate increases rapidly with the distance between
of the SMA wires within the plate. In this case the mechanicdhe layer and the neutral plane of the plate. For this reason the
properties of each SMA/epoxy and graphite/epoxy layer rema@xtreme layers of the plate give the greatest stiffness contribution.
constant. However, it is assumed that the location of the SMAMowever, it should be noticed that the stiffness of the graphite/
epoxy layers within the plate can be changed. The relative loogpoxy layers is usually greater than the stiffness of the SMA/
tion of the SMA/epoxy layers changes from the extreme outepoxy layers, which leads to a slight reduction in the natural fre-
layer to the central one, and this corresponds to a change in theencies and the critical load.
ply stacking sequence of the plate frof@°/(+45°)s/0°] to Furthermore, the influence of SMA activation on changes to the
[(*=45°),/45°/(0°),/—45°/(=45°),], respectively. In Figs. modes of the plate is also investigated, and here it is also assumed
17-19 inclusive results are quoted for the relative changes in ttiat the properties of the inner graphite/epoxy layers remain con-
natural frequencies and the critical load, as a function of the relstant, while the orientation angle of the SMA wires within the
tive location of the SMA wiresh/H. outer SMA/epoxy layers is assumed to be equal to 0 deg and 90
From these results it arises that the location of the SMA wirefeg, respectively. This corresponds to a ply stacking sequence of
within the plate has a major influence on the plate’s behavior. The°/(+45°)s/90°]. In this case only the active property tuning
greatest performance is observed when the SMA wires are fittewthod is investigated and the results presented in Fig. 20 show
within the extreme layers of the plate. When the SMA wires arthat the activation of the SMA wires in either the upper or lower
incorporated within the central layers of the plate changes in theyers of the plate has a very definite influence on the plate’s
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Fig. 8 Natural frequencies of a simply supported plate versus the relative plate thickness (active prop-

erty tuning method )

behavior. However, in the case of the two-sided-clamped plate @onclusions

influence of the activation of the SMA wires is observed, and this . . . .
differs from the case of the simply supported and fully clamped The mflpence of dn‘feren.t parameters on the dynamic behgwor
type of boundary conditions. Active control of plate vibratioPf & multilayered composite plate with embedded SMA wires
modes can be achieved by selective activation of the SMA wir8gve been investigated in this paper. The research carried under
in different plate layers, and this phenomenon is evident from Filflis program has led to the following general conclusions:

20. The activation of the upper or lower SMA/epoxy layers shows
a changeover between certain twin modes of vibration in the forrrrl]
of mode Il and mode Ill, mode V and mode VI, mode VII an

1. In general, greater dynamic performance in terms of relative
anges in the natural frequencies and the critical load of the plate

mode VIII, etc. Moreover, the observed changes in the modes |6fqbserved for the_active strain energy tuning method than fgr the
vibrations occur practically at the same natural frequency. In ti@€tive property tuning method. The performance of the plate is not
case considered only two SMA/epoxy layers for vibration contr@nly @ function of vibration modes, but is also a function of the

of the plate are used, but more extensive control vibration modegundary conditions. The greatest changes in the natural frequen-
can be realised by the use of numerous SMA/epoxy layers, diff@ies and the critical load are observed not for the lowest modes of

ently placed within the plate. vibration, but generally for those modes where the nodal lines are
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Fig. 9 Natural frequencies of a simply supported plate versus the relative plate thickness (active strain

energy tuning method )
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Fig. 10 The critical load of a simply supported plate versus the relative plate thickness

perpendicular to the orientation angle of the SMA wires. Thisf active strain energy tuning is greater. As a consequence the
behavior can be explained by the fact that changes in the platgigatest changes in the natural frequencies and the critical load are
stiffness due to activation of the SMA wires are maximal in thebserved in the case of the two-sided-clamped type of boundary
direction of the SMA wires. This is so in the case of the activeondition, whilst the lowest changes are observed in the case of
property tuning method and also for the active strain energy tutie fully clamped type of boundary condition.

ing method. Consequently, the most significant affected modes ardt is likely that in practice the use of the active strain energy
those for which most of vibration energy is associated with thieining method will be limited. This is because additional SMA
plate motion in the direction of the SMA wires. For the activdboundary conditions are requirédoting that these are indepen-
strain energy tuning method the in-plane load resulting from actient of the structural boundary conditioms order to produce the
vation of the SMA wires additionally influences the lowest naturalecessary tensile recovery stresses during SMA activation. If this
frequencies of the plate, principally the fundamental natural freondition is not met then the recovery stresses produced during
guency of the plate. The number of constraints imposed by difféeMA activation will be compressive, and may greatly reduce the
ent types of boundary conditions also influences the results. Fatural frequencies and the critical load of the structure. More-
more flexible types of boundary conditions a smaller number ofver, high recovery stresse@nd these could be tensile or
constraints can be imposed, and then both the natural frequendesipressiveproduced during SMA activation may also generate
and the critical load of the plate are necessarily lower. This meahnigh shearing stresses within the structure, thereby leading to
that the influence of the SMA generated in-plane load in the cadamage.
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Fig. 11 Natural frequencies of a two-sided-clamped plate versus the relative volume fraction of graphite
fibers (active property tuning method )
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In contrast with this the natural frequency and critical loaffequencies and the critical load are, additionally, a function of the
changes generated by the active property tuning method will beentation of the SMA wires, as well as the length-to-width ratio
smaller than those due to active strain energy tuning. Therefakthe plate.
the active property tuning method provides a potentially safer4. In the case of the multilayered composite plate, the greatest
methodology for the application of SMA wires in the active conperformancein terms of the greatest relative changes in the natu-
trol of the dynamic behavior of composite structures. It is imporal frequencies and the critical lopé observed for the modes
tant to note that the active strain energy tuning method can pagiose nodal lines are perpendicular to the orientation angle of the
sibly be successfully used for shape control of composi®MA wires. This allows selective, as well as economical, use of
structures, as long as certain define disadvantages are unders®ds for active control of the dynamics of composite material
and accounted for. On that basis it is prudent to recommend tisatuctures. The SMA wires can be orientated within a structure in
the active strain energy tuning method probably requires furthiére most effective way, affecting only the necessary and relevant
investigation. natural frequencies and modes.

3. The dynamic performance of the multilayered composite The use of the active strain energy tuning method has an addi-
plate is not only a function of the modes of vibration but also @ional influence on the lowest natural frequencies and the corre-
function of the boundary conditions that are operative. For ttgponding modes, and thus the performance of the plate can be
multilayered composite plate the changes observed in the naturmreased.
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Fig. 13 The critical load of a two-sided-clamped plate versus the relative volume fraction of graphite
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Fig. 14 Natural frequencies of a (a) two-sided-clamped and (b) fully clamped, plate versus the orientation
angle of graphite fibers (active property tuning method )

5. The dynamic behavior of the multilayered composite plate The relative volume fraction of the reinforcing fibres is also
also depends on the orientation of the reinforcing graphite fibetgnited by commercially available structural composite compo-
However, it should be noted that structural components made r@nts, for which the relative volume fraction of the reinforcing
composite materials are commercially available in sheet form, f@bers varies from 0.4 to 0.6. These values determine many appli-
which the orientation angle of the reinforcing fibers is determineghtions for which the SMA wires can be successfully used in the
by the manufacturing process and it is possible to obtain differejfym proposed in this paper.
quasi-isotropic composite material sheets in [a&90° layout 7" The |ocation of the SMA wires has great significance for the
fro”? certain commercial outletg. For.th.at reason the use O.f { ?namic behavior of the composite multilayered composite plate.
particular parameter for dynamic optimization is greatly limitedry o o atest performance is observed when SMA wires are lo-
Some influence can be achieved by the optimal choice of the plg . .

cated in the outer layers of the beam and plate; however, the

stacking sequence. : o i .
9 seq %Etural frequencies and the critical load are slightly reduced in

6. For both the active property tuning and active strain ener ; i h
tuning methods the results presented in this paper show that 1H8S€ cases. It is worth noting that when the SMA wires are lo-

thickness-to-length ratio is highly influential, as is the relativéated within the inner layers, close to the neutral plane of the plate
volume fraction of the reinforcing graphite fibers. However, ifor example, then the natural frequencies and the critical load are
needs to be appreciated that in most engineering applications fi§¢ much affected. This is because the SMAs add little or no
thickness-to-length ratio of composite structural elements is prigentribution to the plate stiffness. Additionally, strong thermal ef-
cipally determined by the lowest natural frequency, or the criticdcts can be observed due to heat transfer, resulting in composite
load, of the structure. material softening during activation of the SMAs for location
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Fig. 15 Natural frequencies of a (a) two-sided-clamped and (b) fully clamped plate versus the orientation
angle of graphite (active strain energy tuning method )

within the neutral plane of the plate. When the SMA wires ar€ouncil, via grants GR/N06267 and GR/N06328. The support of
located within the outer layers of a structure the thermal effect aRmolls-Royce plc is also gratefully acknowledged.
not likely to be as strong due to better cooling conditions.
8. It has successfully been shown that SMA wires can be used
for active control of the modes of vibrations of the compositappendix
multilayered composite plate. The observed behavior shows thaﬁ . . . -
activation of the SMA wires in different layers of the plate enables " thiS paper a new multilayered composite plate finite element
interesting changeovers between certain twin modes of vibratiofsProPosed, as shown in Fig. 21. The element has eight nodes and
Moreover, by the use of numerous layers whereby the SMA wir§§Ven degrees-of-freedom at each node. These degrees-of-freedom
are placed differently within the plate more extensive modal cofi'® defined as the longitudinal '“'p'?‘”e displacemetsdv, the
trol can be achieved. However, it should be noted that succesf@nsverse displacemem, the rotationsg, and ¢y due to the
active modal control can only be performed for certain types dgf2nsverse displacement, and the independent correction rota-
plate boundary conditions. tions 6, and ¢, for the rotationsp, an_d @y, ar_ld du_e to shearing
effects. The length of the element lis the width isB, and the
thickness isH. In general the element consists Nflayers made
up of a unidirectional composite material. In the case of the analy-
Acknowledgments sis presented in this paper these are two SMA/epoxy layers and
The authors wish to acknowledge the support provided for thisn graphite/epoxy layers. Reinforcing fibefSMA wires,
research by the UK’s Engineering and Physical Sciences Reseagciphite fibres are arbitrarily orientated within the layers, and
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Fig. 16 The critical load of a (a) two-sided-clamped and (b) fully clamped plate versus the orientation
angle of graphite fibers

their orientation angler is measured within th&-y plane of the H
element U(X,y,2)=Uo(X,y) =2+ dWo(X,y) +Z: 1~ - Ox(X.Y)
The displacement field within the element is assumed to be as H @
follows, according to first-order shear deformation thef29,21: v(X.y,2)=vo(X,Y) =2 dyWo(X,Y) +2- 7 - fy(X.y)
H
U(X,Y,2)=Uo(X,Y) + 2 @x(X,Y) +2: = 6(X.Y) W(X,y,2)=Wq(X,y)
H )
v(X,Y,2)=vo(X,y) +2Z- @y(X,y)+2- B 0y(X,Y)

W(X,Y,2) =Wo(X.) Utilizing known finite element techniques and using boundary
e 0% conditions for the nodal displacements of the element, the shape
where ug(x,y) andvy(x,y) are the longitudinal displacements,functions of the element can be easily derivigl,22. It can be
with wg(x,y) being the transverse displacement of the plate elseen that the nodal degrees-of-freedom which are assumed for the
ment defined within the neutral plane of the plate. The rotatiomdement allow an improved approximation for the transverse dis-
ex(x,y) ande,(x,y) of the element can be expressed as the negalacementwy(x,y). For the longitudinal in-plane displacements
tive first partial derivatives of the transverse displacememny(x,y) and vy(X,y), and the independent correction rotations
Wo(X,Y), respectively. Under this assumption the displacemeni(x,y) and6,(x,y) second-order approximation polynomials are
field within the element takes the following form: used, as in the case of the classical plate finite element, on the
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property tuning method )
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035 040 045 050

(active

assumption of first-order deformation theory. However, for the It can be seen that for small thickness-to-length ratios the dis-
transverse displacementvy(x,y) higher-order approximation placement and strains fields of the new element are consistent

polynomials can be used.
For small displacement theory the straif20], within the ele-
ment can be expressed as

H
Ex= aXUO_Z' é’X,XW0+Z' E . é’xex
H
Ey=0dyvo—Z- dyyWo+Z- B dy by
H H
Yxy= OyUg+ dxvo—2Z- dy yWo+ 2 T dyOxtz- B IOy .
H
Yxz= Ut HW= L Ox
H
Yyz= v + W= B 0y

with Kirchhoff plate theory, while for higher thickness-to-length
ratios influence from shearing strains is included. The finite ele-
ment proposed here is characterized by better dynamic and static
behavior than the classical plate finite element, and as a conse-
quence of this no locking effects are observed.

Stresses within theith layer of the element consisting of
layers of a unidirectional composite material can be expressed by
Eq. (4), where matrixQ, is the matrix of elastic coefficients, and
has a very well-known structurg23]. It should be noted that the
elements of matrixQ, depend on the relative volume fractions of
composite material components, and also on the orientation of the
reinforcing fibers within the layeffor details see, for example,
[20,23).

colloy,0y,0xy:0%7,0y,]n=Qn-COl ey &y ,8xy,8x7,8y7]n @
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From this application of the well-known procedures of the finite
element method,21,22, means that the characteristic mass ma-
trix, stiffness matrix, and also the geometrical stiffness matrix of
the element can be easily obtained.

It should be noted here that in the case of the active property

cal load, or modes of vibratiohsorrespond to the case when
activation of the SMA wires within the SMA/epoxy layers leads
only to changes in the element stiffness matrix, while the mass
matrix of the element remains unaffected. The same also applies
to the global stiffness and mass matrices. In the case of the active
strain energy tuning method, however, besides changes in the el-
ement stiffness matrix, the in-plane load resulting from the acti-
vation of the SMA wires within the SMA/epoxy layers is also
taken into account by means of the element geometrical stiffness
matrix. In both cases the solution procedure used in the paper is
analogous to that presented[it3,14].

Iy tuning method the results obtainéhtural frequencies, the criti-
X
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Fig. 20 The influence of SMA wire activation on the vibration
modes of a simply supported plate (active property tuning Fig. 21 The proposed new multilayered composite plate finite

method )
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Multiscale, Multiphenomena
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at the Nanoscale: On Constructing
Reduced-Order Models
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e | With Many Degrees-of-Freedom

Dean Emeritus, Pratt School of Engineering

D. Tang The large number of degrees-of-freedom of finite difference, finite element, or molecular
dynamics models for complex systems is often a significant barrier to both efficient com-
putation and increased understanding of the relevant phenomena. Thus there is a benefit
to constructing reduced-order models with many fewer degrees-of-freedom that retain the
Materials Science, same accuracy as the original model. Constructing reduced-order models for linear dy-
Duke University, namical systems relies substantially on the existence of global modes such as eigenmodes
Durham, NG 27708-0300 where a relatively small number of these modes may be sufficient to describe the response
of the total system. For systems with very many degrees-of-freedom that arise from spatial
discretization of partial differential equation models, computing the eigenmodes them-
selves may be the major challenge. In such cases the use of alternative modal models
based upon proper orthogonal decomposition or singular value decomposition have
proven very useful. In the present paper another facet of reduced-order modeling is
examined, i.e., the effects of “local” nonlinearity at the nanoscale. The focus is on nanos-
cale devices where it will be shown that a combination of global modal and local discrete
coordinates may be most effective in constructing reduced-order models from both a
conceptual and computational perspective. Such reduced-order models offer the possibil-
ity of reducing computational model size and cost by several orders of magnitude.
[DOI: 10.1115/1.1558079

Research Associate Professor

Department of Mechanical Engineering and

Introduction region and the molecular dynamics region? This is currently done

In the theoretical and computational modeling of nanoscale Gléqsed upon the anticipated behavior of the response, i.e., it de-

i and renomen, .. nanoosaltorsand crack popagaffCe O 97E% S0eTnce s exsenialy 2 mater of good
in solids, recent work[1,2], has emphasized the benefits of an o9 ’ q ' y

X e - correctly connect the two distinct computational models at the
appropriate blend of finite element continuum models, molecul%rterface between the two spatial regions? The workig?] and
qynamlcs m(_)dels, and quantum mechar_ucal models. The mOt'¥8'erences cited therein is largely devoted to answering this latter
tion for creating such multiscale models is clear. On the one ha estion. And significant progress has been made, although a cer-
contlr)uum.models fail to descrlbe the phenomena of interest n amount of judgment and numerical experimentation is still
certain regions of nanoscale devices or of crack tips, for examp gquired to answer this question using current methodologies
and must be replaced by molecular or quantum models. But on th I

! o Gn the present paper, a new approach is proposed that is both
other hand computational cost prohibits the use of r_nolecular 6mputationa|ly effective and rigorously addresses both questions.
guantum models over the entire computational domain of the

vice or phenomena. Thus continuuiinite element models are B the present approach, the total model is initially based upon the

required over most of the computational domain to keep the COfir]er scale model, e.g., molecular dynamics, but then a continuum
q P p roximation is extracted from this model for those portions of

putation manageable and are entirely adequate to descrlbet spatial region where such an approximation is appropriate.

physical behavior of the device in thqse regions. Yet mo'ecu"?‘F f\’[oreover, since the methodology permits one to choose any divi-
(rqeu;gtnusm effects must be modeled in some smaller, yet cnﬂc&bn of the total computational domain into a continuum region on
Theré are two major questions that arise in blending two ditr-]e one hanq ano! say a molecular dynamics region on the qther,
tinct conceptual and computational models, e.g., a finite elem e may rapidly simulate the model response for different (_:h0|ces
. . o eI Bt continuum and molecular dynamics regions to determine the
continuum model with a molecular dynamics model. One questl%

. . . - ) imum choi f com ional mains.
is, how do we choose the two spatial regions, i.e., the continuu timum choice of computational subdomains

As will be seen the methodology has a certain feature which
" Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF permits a check for self-consistency as to whether the continuum
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OFAPPLIEDME-  @PProximation may be used in a given portion of the computa-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 9fional domain. And of course the method is very computationally

2001; final revision, Sept. 25, 2002. Associate Editor: A. K. Ferri. Discussion on thefficient, by virtue of creating dsubstantially reduced-order
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenmbde| We expect computational advantages for the proposed
Mechanical and Environmental Engineering University of California—Santa Barbara, ! . .
Santa Barbara, CA 93106-5070, and will be accepted until four months after fifilethod comparable to those recently achieved for computational

publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. fluid dynamics(CFD) models where the number of degrees-of-
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Fig. 1 A one-dimensional, discrete spring-mass system % 25+ 1
2t ]
freedom and associated computational costs have been decre: J
by several orders of magnitud®r complex systems withveak
global nonlinearities[ 3], using reduced-order models. In this pa- . . ‘ . ‘ .

per, the challenge of addressing eitherakor strong local non-
linearities is addressed.

The construction of reduced-order models for nonlinear sy.
tems can be treated in the abstract, but some insight into the i i ]
physical effects of the nonlinearity will often suggest, if not dicf9- 2 Natural frequencies of first two modes for various total

. : . mber of particles, N, , in system (b). Note: Natural frequen-
tate, the most effective approach to take. When the nonlinearity J§™°0 &' P2 by mult [l;licatior): by (Ni so that & finte as‘i/mp_

d@stributed globally over the spatially domain, effective techgq is reached as Njy—»c, corresponding to a continuum limit.
niqgues have been revised to construct reduced-order models,

[3—12. In this paper we consider a representative system with a

strong local nonlinearity. It is a one-dimensional system with

many discrete nonlinear spring/masses or nonlinear force law: I . . .

suchyas those that arise ir? mglecular dynamics. The goal is t(:The klne_tlc and potential energies for the entire sys(arnb)
develop a local discrete model near the termination of the sprin’&f"y be written as
mass or molecular system to provide detailed information in that 1
region while using a modal representation to describe the motion T=2> M (1)
of the system sufficiently for away from the termination region. 27
This model may be thought of as combining the most attractive

20 25 30 35 40 45 50

|
features of a complementary particle/waggenmodg descrip- U= }2 Ki(Xi—Xi 1 1) )
tion of the overall model. This approach is attractive for either a 24 R AL
linear or a nonlinear model in the termination region, but is espe- ) o
cially useful for the latter. Note that in Eq(2), X,1=0 for the example shown in Fig. 1,

Application of this model to material specimens that arke., thel +1 mass is fixed in the wall on the right-hand side and
stretched by an atomic force microsco®& M) is a nanoscale does not move.
device of significant current intere$t,3]. Also this method may ~ And the virtual work may be expressed as
be extended to two or three dimensions where such models might I
be use.d to describe crack propagation, for Qxarﬁhlﬂ. If these . SW= 2 Fiox; . ©)
extensions prove successful, and success is not guaranteed, this =1
approach will open new research frontiers for the rational design L - . . .
of nanoscale devices and the analysis of nanoscale phenomena,FOr Simplicity of exposition, in the following only free vibra-

The readers attention is also drawn to the interesting work BPn 1S consideredr,] I.eF=0. Now consider systerfb) by itself. Py
Burton et al.[14] and Friswell et al[15] who also discuss issues " OF Systenb) each mass and spring is assumed to be identical for

of reduced order modeling in related, but distinct contexts. ~ SimPplicity and, more importantly, the spring is linear. In Fig. 2 the
first two natural frequenciegeigenvalues for this system are

shown as a function of the total number of masses and springs,
Reduced-Order Models for Nonlinear Systems With N,. The limit asN, approaches infinity may be thought of as the
Strong Local Nonlinearities discrete system approaching a continuum model and the eigenval-
ues have been appropriately scaled to display this limit more
Rlearly. Note that if only the lower eigenmodes for systémare
needed, a relatively small number ¥ is sufficient to model the
. ) ) ) system even if the actual number Nf, is very large. This is the

Analysis of a Wave-Particle Model for a One-Dimensional 4qvantage of a finite element or finite difference representation of

Model With Discrete MassesNonlinear Springs. In Fig. 1 the gystem(b) starting from a continuum model; but now the equiva-
spring-mass system is shown. The “springs” may arise from mjgnt result is seen here from a different perspective, i.e., as a wave

croscale or macroscale forces. Now consider this system as begigigenmode description of a discrete system with many degrees-
decomposed into two systems; of@ is composed of particles of.freedom.

and the othetb) is composed of wavegigenmodes Of course  gystem(b) is now represented in terms of itlower) eigen-
the waves or eigenmodes of systél) may be found by starting modes for any value dfl, . Thus takingb, to be the generalized
from a particle description and then determining the eigenmodgsordinates associated with an eigenmode expansion of the mo-

of system(b). So there is a particle/wave duality here, but it i$jon one has the following expressions for kinetic and potential
entirely in terms of classical mechanics for this example. Thgyergy:

wave or eigenmode description for systé will be advanta-
geous when the spatial/temporal resolution needed is global rather Np<Np )
than local and the number of eigenmodes required is much smaller Tp== E b2mP
. . 2 = n n
than the number of particles in systdh). n=1 )

We begin with a simple spring model, before turning to
nanoscale molecular dynamics model per se.
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Np<Np, System (a) is nonlinear
U _E 2 b2(w?)2MP The present approach is particularly advantageous if the dy-
b2 & n @n)"Mp- namics of systenta) are governed by nonlinear relationships, but
) o system(b) is entirely linear[14,15. For example, consider a non-
By contrast, however, syste(a) is modeled with discrete local Jinear spring connecting systefa) to system(b). Then the poten-
coordinates. We first consider systéan in the linear approxima- tial energy might be represented as
tion and then we will consider the nonlinear case. 1 1
System (a) is linear _ T aya a2, T ed ya_yayd
System (a) is represented as a discrete set of masses and U= 2K11(X1 2 4K31(Xl X2)" (16)
springs. Indeed for purposes of illustration, let syst@nbe a . . . .
; ; Hh linefi ; ; .Using this expression and following through on the develop-
ngl ring-m h kin n ntial ener foll : . . S
single spring-mass with kinetic and potential energies as fo OWr%ent of the equations of motion as before, it is seen that @qs.

1 ian and(11) are unchanged, but Eq4.2) and(13) are now nonlinear
Ta=5MI(x3})

a=3 in the unknowns andx3 . Even so one may obtain a solution to
®)  these equations by time marching E¢kl) and(12) for x§, b,,
U :l Ka(x3—x3)2. using Eq.(10) to determinex at each time step in terms bf, and
2 "B Eg. (13) to determine\ at each time step in terms a&f andx3.
Of course, the mass of systein) immediately adjacent to that FOr the nonlinear case, E¢d.2) and(13) become explicity
of system(a) is the first mass of systeif). And thus there is a M35+ K2, (x3— x3) + K2,(x2—x3)3=0 (12)
constraint condition that describes the connection between sys-
tems(a) and (b), viz., —K§(x§—x3) —K§i(x§—x3)3+ N =0. (13)
ngxg_ (6) Although this is not pursued here, the reader may readily verify

that had the(linear eigenmodes of the combindd+b) system

If the dynamics Sf systertb) are now expressed in terms of itSpeen ysed to describe the system, the conceptual and computa-

eigenmodes, ther;” may be written in terms of the eigenmodakional difficulty with such an approach when including the effect

coordinates for systertb) as follows: of the nonlinearity would be substantially greater than that de-
scribed above.

b= Einby, (7 If the goal is to determine the free vibrations of such a system

n and one is content with a single harmonic, then a particularly

aimple and direct result can be obtaingth,17]. Omitting details
it is simply noted that it is advantageous to define a new coordi-
nate which is the stretching of the nonlinear spring, viz

where [E] is a matrix whose columns are the eigenvectors
system(b). And in particular,

X3=2) Eqnby. ® Ax=xi-x3 (17)
n
- and replace the two unknowng and x5 with x§ and Ax. Also
Defining note that Eqs(12)y, and (13)y, can be combined to produce a
single linear equation in terms dfx and\. From Eqgs(B1), (B2),
fzngz Eqinbn (9) (12, and(13)y. the governing equation for the free vibrations
n becomes
then the constraint equation that expresses the connection between
systemg(a) and (b) is simply —K3AX— K5 (AX)3+ AXwZMi/
f=0. (10) 2
. . o 2 az in _
From Lagrange’s equations using a Lagrange multiplier to en- 1-o"M; ~ MP[— w2+ (0P)2] =0. (18)
force the constraint condition, the equations of motion for system n n
(at+b) are The solution for the nonlinear frequencies of free vibration can
b ba2 be effected by plotting the right-hand side and left-hand side of
Mulbn+ (wp)“Pa] —AE1,=0 (11) Eq. (18) versus frequencyw, for a chosen amplitudeAx, and
M3+ K[ xa— xa] =0 (12) determining their intersection.

Note that after the solution is obtained one may check to see if
—KIAx3—x3]+1=0. (13) t_he solutiqn has signifi(_:ant nonlinear response in either the non-
linear spring per se or in any of the nominal linear springs. If in
The dynamical response unknowns ag, x3, b,, and x fact a nominally linear spring has a response that exceeds its lin-
which are determined by solving Eq4.0)—(13). ear response range, then that spring must be transferred to system
One can put this set of equations for syst@mb) in a standard (2 and re-analysis and re-simulation must be done.
eigenvalue form by eliminating the variablesandx3 using Egs.
(10) and(13) and reducing the set of equations to the determina:, . o
tion of the unknownsx§ andb,, . This new set of equations is thus iscussion and Generalization
A few generalizations of this example are now discussed. For
xa— 2 E. b.l=0 (14) example, the specific form for the potential energy can be readily
1 < "im replaced by any well-behaved function of the stretching of the
spring. Also the one-dimensional model may be replaced with a
two or three-dimensional model. In both cases results analogous
to the above are readily obtained including Eg8) if only a
single nonlinear spring is present. For multiple nonlinear springs,
Of course, Egs(14) and (15 are coupled among the coordi-although the formalism goes through, the number of analogous
nates,x; andb,, but the number ob, is usually dramatically equations becomes larger as the number of nonlinear elements
reduced by a truncation of eigenmodes of sys{bm increases. Yet the present approach will still be advantageous rela-

ME[b,+ (02)2b,]— E1K§

Xi_ E E1mbm

m

M@+ K2 —o. (15)
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tive to either including coordinates for each spring mass in sys- aUT 1 3’1 au 312 1 ors
tems(a) and (b) on the one hand or using the eigenmodes of the 3x1 3,1 3x1 e ) 3x1 3, ; 3x1
combined systenfa+b) on the other. Here we briefly discuss the
formulation for the one-dimensional model using the Lennard- 0
Jones potential, a well-known model often used in molecular dy;
namics,[18]. The extensions to two and three dimensions are left

oU U oU
to future work. L (28)

. . X ar ar
Theoretical Model. The Lennard-Jones potential has the fol- . ) ! 192 )
lowing form: Similar expressions are obtained fel+/dx; until the last
mass X, , is considered. For the last mass

U—crn r{“”_% (19) dUr  aUq
of ym — pn &_X| = 19_r| =0. (29)
wherer is the distance between mass particledias the dimen-  But Eq. (29) implies that
sions of energyr; is the value ofr for which U=0, and without X=X _1=T (30)
S

loss of generality one may also selegtr; . ) . !
It will be of interest to determine the value ofr for which  recalling Eq.(20). But from Eq.(29) and the preceding equation

dUldr =0 that arises in the static equilibrium or confirmation of 40r 9U/dx, 1 one infers that

system of particles. Usin@l9), r¢ may readily be determined as Ut
follows: F =0 and X_;—X_»=T5 (31)
re (m\Ym-m and eventually that
—=|—= . (20)
rio\n Uz
) —=0 and x;=rg. (32)
For typical values, sayn=12 andn=6, ary
; Thus the static equilibrium values &f are
==l (21) X, =Xis=irs for i=1,2,...N (33)

fi and it is seen that each “spring” is stretched more than the previ-
Also the value of9?U/dr? whenr =r will be of interest. It is ous one in proportion to its “distance” from the “wall.”
found to be Next, turn to the dynamic equations of motion. These of course
are of the form(assuming for simplicity of exposition that all

aZU . . X A
2 —m-2_ —n-2 masses are equal, though this assumption is not essential to the
i i CriIm(m+1)a n(n+1)a 1 (22) proposed method
s
. dUg .
where mx + WZO fori=1,2,...l. (34)
i
_fs_(m Him=n 23) First consider small dynamic perturbations about the static
T I equilibrium positions or confirmation. Then, for example,
and again fom=12 andn=6, Ut _ ‘9UT_ Ut (35)
2U IXy drq  ary’
— =Cr 18x2 1. 24 But using a Taylor Series and the ansatz x,,+X;, etc., one
2 Il (24) ,
L P determines that
2
Consider now the static equilibrium of a one-dimensional array 3UT 3UT Uy $ 4+HOT (36)
of massegrecall Fig. 2 whose potential energy is now described Gry oy R or? . !
by the Lennard-Jones potential. Furthermore a “nearest neighbor” . s LT
approximation will be useda commonly invoked assumption in 0
treating the statics and dynamics of many particle syskeftss d similarly
assumption leads to simple results, but perhaps more importanaH)]/ 5
the results may be used in an iteration process to account for manlﬁ Uy Uy ¢ e VLHOT
neighbor potential energy interactions, if desired. Wy Ory| B ars (%2 =x) ’
Now the total potential energy of the one-dimensional array of 1T M2 s RESRERIAE I
particles using the nearest neighbor assumption is 0 (37)
Ur=U(r)+U(r)+U(rg)+ ... . (25)  Note, however, that
where U U U
0z =7 =7 (38)
M=Xy, T2=Xp= Xy, T3=Xg=Xz.... (26) o X1=X1s o r=rg e X1 =X1g Xp=Xpg
Here it is convenient to use a numbering system for the massThus
particles that starts with the mass nearest the “wall” or fixed oU  g2U
point. See Fig. 1. Note this numbering system is reversed from — =  [2%—X] (39)
that of the previous “spring” example. T P
The conditions of static equilibrium are of course that from Eqs.(35)—(38). And the first maséfurthest from the “wall’)
Uy equation of motion becomes
T —=0 fori=123.... 27) U
Xi my+—7  [24—%]=0. (40)

r=rg

and using Eqgs(25) and Eq.(26)

Journal of Applied Mechanics MAY 2003, Vol. 70 / 331



SYSTEM a SYSTEM b
m mi m y
q Ky, ki Lk 4 AO sin@ t
LX ] o 0 /r—
Y Substrate
y
X X; X
K, 1

Van der Waal’s force

Cantilever beam of AFM
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Fig. 4 Nonlinear interatomic force versus the interatomic
separation, r/o

From a similar calculation the equation of motion for the se&X?Er?+lv will appear in a nonlinear form. Recall EQ]_S) from

ond mass is
2

m§(2 + W (41)

[25\(275\(175\(3]20
r

r=rg

the previous nonlinear “spring” example. The details are de-
scribed in Appendix B.

Numerical Example. As is well known, the rupture force of
single covalent bonds under an external load can be measured

The equations of motion for the other masses are similar excejith an atomic force microscod@FM). In the present numerical
for the mass furthest from the “wall” whose governing equation igxample, a polysaccharide macromolecular chain with 101 atoms

. &
mx.+75 [X;—X-1]=0.

S

(42)

is considered and the last atom is covalently attached to the AFM
tip which is mounted on a cantilever beam and the first atom is
attached to a substrate surface. A schematic diagram of this model
is shown in Fig. 3. For details of this experimental model, see Ref.

_ Finally, now consider the last “spring” or potential to be non{1g] Here this experimental model is simulated using molecular
Lmear. AS with the previous examples, think of the Other,“”,eeﬁynamics and a reduced order model. We assume that the sub-
springs” and associated masses as being modeled by their eiggfyate surface is excited by a single harmonic motigsin wt
modes. Again this is called systelin. System(a) is the last mass yhere A, and o are the excitation amplitude and frequency. In

furthest from the wall with its associated nonlinear “spring” OfFig. 3, the AFM cantilever beam baip probe can be moved to

potential.

change the distancé, between the tip and the substrate surface.

As before one may determine the eigenmodes for sy$tBm asq the deflection of cantilever beam, will be changed with a
using the dynamic small perturbation equations of motion, Eoéhange inL. The cantilever beam has a spring constankgf

(40)—(42). Think now of adding a nonlinear mass/spri(Epten-
tial) with coordinates<{’,; andx?, i.e., system(@. The kinetic
and potential energies of systg@a are

Ta=3 MG 1)

(43)
U= U, — x5 (44)

and the constraint equation that connects sys@ro system(b)
is

=0.58 kg/¢ and the beam mass iig; .
For the present example, the Lennard-Jones potential is given

by
o 12 o 6
(2

with experimentally determined parametess=0.34 nm and
€=0.0104 eV.

In this example, for illustrative purposes, we assume the AFM
tip probe is removed from the macromolecular chain and therefore

U(r)=4e

X?ZXF~ (45) does not attach to the macromolecular chain li.is,large enough
] b that the last massy, , of the chain is free. This example is used to
As before the dynamics of’, i=1,2,...1 are to be repre- examine the utility of the reduced-order model. The dynamic re-

sented by a small number of dominant eigenmodes of sy@iem sponse of this system is calculated using E§5)—(45).

Employing the Lagrange multiplier formalism, one obtains a when the tip probe is moved close to the last mass of the
small number of equations to represent the combined nonlingaacromolecular chain and it is covalently attached to the AFM tip
system in terms of thedominan} eigenmodes of systei) and  of the cantilever beam an@dhe boundary conditionof the last

an individual particle description of syste(@. These choices are massm,, is constrained by its attachment to the cantilever beam

both conceptually and computationally compact as well as convgsFM). Results for this case will be reported separately in another
nient. As was true for the previous example, the equations ghper.

motion are linear in the modal coordinates of syst@nand also « Normal static equilibrium position

the Lagrange multiplier that represents the force of constraint thatas described before, for the present example, the normal static
connects systerta) and systentb) through the enforcement of the equilibrium position of the macromolecular chains=irs, i

constraint, Eq(45). However, the coordinates of systea), x, ;
and x? or, more particularly, the difference of these twd, ;

332 / Vol. 70, MAY 2003

=1,2,...1, and1=101. See Eq(33). r,=0.382 nm or 2°¢
corresponding t@U/dr =0.
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Fig. 5 Dynamic response of the macromolecular chain for Aplo=3.5and u=0.01

Two alternative equations of motion, a perturbatinearized of the force laws are nonlinear and the remainder are [jnear
equation and a full nonlinear equation are derived. For a smalko plotted in Fig. &) for comparison. Figure (6) shows the
dynamic perturbation about the static equilibrium position, thems deflection amplitude for each atom of the macromolecular
linear “spring” stiffness of the chain ik, =k,= ... =k =k and chain. The atom static equilibrium position is normalizedrRy
the interatomic force is modeled as linear. The linearized stiffnessd is measured from the substrate surface. The agreement be-
ke, is determined by tween the full nonlinear and full linear results is on the whole

2U good, but there are detailed differences. For the partial nonlinear
k.= =0.803 kg/3. model the results are between the full nonlinear and the full linear
¢ or? r—r cases, as expected.
S

JU 4e
Coor

N

However, whenAy /o increases, e.gAq /oc=5 and ©=0.01,
For the full nonlinear equation of motion, the interatomic forcghe results from linear and nonlinear models can be quite different
is nonlinear. The nonlinear interatomic fordg,, is determined as shown in Fig. 6 for the response time history at the free end.
by The perturbation theory is no longer accurate. But more signifi-
o\ 13 o\7 cantly the nonlinear model shows a diverging oscillation indicat-
12( _) —6(—) . ing the chain is “breaking” for such a large amplitude excitation.
r r Figures Ta),(b) show the rms deflection amplitude for each
Figure 4 shows the nonlinear interatomic force versus the intétom of the macromolecular chain fg=0.05,Aq/¢=0.1 and
atomic separatiom/c. In this figure the linear “spring” stiffness #=0.2, Aq/c=0.075, respectively. There is reasonably good
of the chain, i.e., the slope of the curve at the static equilibriugreement between the linear and nonlinear models in the small
position, rg, is also shown. The small dynamic perturbationnteratomic separation range, i.e., for smalls. The agreement
theory is effective over a small, but nontrivial, rangeréé, as Petween the two models generally improves for smalefo and
will be seen. smaller . _
+ Small dynamic perturbations One can define a total rms error, err, as follows:
The macromolecular chain can be modeled as a dynamic per-
turbation linear system when the interatomic force is linearized
about the static equilibrium position, but as a nonlinear syste 25
when the full interatomi¢Van der Waal's force is used as in Fig.
4. The equations are normalized by the length faetpand a time

20 y
factor, 1£) where )?=24e/0>m andm is the atom mass of the ¢
macromolecular chain. The nondimensional time4sQt and the & 151 Full linear _
nondimensional frequency ig=w/(). A viscous damping force, & Full nontinear

fiscous: 1S @dded to the chain that is assumed to be of the for %
fuiscous™ 26mQx with ¢ taken to be 0.01. Here we consider the® 10
molecular chain to be immersed in a viscous fluid.
Figure 5 shows a typical dynamic response using the perturke s
tion linear equations and also the original nonlinear equations f&
a nondimensional excitation frequengy=0.01 and a base exci- €
tation amplitude ofAy,/o=3.5. Figure %a) shows the dynamic §
response at the free end versus the nondimensional tinkhe 'g
solid line indicates the results from the linearized equations a,$
the broken line is for the results from the nonlinear equations. TI:Z
two results are close, but not identical. .10 1 1 !
Another (intermediat¢ model can be constructed in which a 0 500 1000 1500 2000
nonlinear force representation is used near the free end of 1 Nondimensional time, T
chain and a linear model is used near the substrate end. Results
using a 90% and 30% nonlinear force mo@&hen 90% or 30%

na.

Fig. 6 Time history at free end for Ay/o=5 and u=0.01
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Fig. 7 RMS amplitude of the macromolecular chain
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err= (

WhereX; noniinearlS the rms amplitude ath atom of the macromo-
lecular chain from the nonlinear model, angjne, iS the rms
amplitude ofith atom from the perturbation linear model.

2
Xi linear™ Xi, nonlinea
- %

Xj ,nonlinear

three different combinations o&,/o and u. This suggests that
the threshold levels observed in Fig. 9 all correspond to a critical
value ofr, /o, i.e., approximately,/oc=0.02.

* Reduced-order model with quasi-static correction
Now consider the construction of a reduced-order model for this
example. For simplicity and illustration purposes, systémis
chosen to be linear with 100 degrees-of-freedom and sy&iein

To illustrate the nature of the threshold dependence of the pepnlinear with one degree-of-freedom, i.e., a nonlinear Van der
turbation theory, results for the total rms error versus excitatiowaal's force betweer, andx,_,. For systemb), the eigensolu-
amplitude,Aq /o, are shown in Fig. 8 for several different exci-tion is calculated and the eigenvalues are shown in Fig. 10 as the
tation frequenciesg=0.01, 0.05, and 0.2. The effective range ohondimensional natural frequenay; /), versus the eigenmode

the perturbation linear model increasesyaand A,/ o decrease.
For less than 10% error, the maximukg /o is 3.65 foru=0.01;

number. The lowest nondimensional natural frequeagy,(}, is
0.0154.

0.75 for »=0.05 and 0.1 fow=0.2, respectively. Note the rapid Recalling Eqs(40)—(42), for the systemb), the dynamic per-

change in error withAy /o at certain critical threshold values.

turbation equations are rewritten in matrix form:

To better understand the critical threshold values, consider the

nondimensional deflection response between the last two atoms,

i.e., ri/lo=(x,—x,_1)/o, versust as shown in Fig. @) for
Ay/o=3.65 andu=0.01; Fig. 9b) for Ag/o=0.75 andu=0.05;

and Fig. 9c) for Ay/o 0.1 andu=0.2. Note that the nondimen-

sional peak response amplitude fof o is nearly the same for the

Excitation frequency,s/Q=0.01
Excitation frequency,w/Q=0.05 ——
Excitation frequency,w/Q=2 —----

Nondimensional rms error,%

0.5 1

1.5 2 25 3 35 4 45
Excitation amplitude,Ay/c
Fig. 8 Total rms error versus excitation amplitude, Ayl o for

different excitation frequency, = u=0.01, 0.05, and 0.2
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[MI{G+ KR ={f(1)} (46)
where{f(t)}T={k;Ay sinwt,0,0,...0}". Let
X=Xqs+X (47)

whereXqs is the quasi-static response akds a small dynamic
response. The quasi-static response is defined to be that when the

inertia termsx, (and also the damping termare neglected. From
Eqgs.(46) and(47), we thus have

Xos=[K]~Hf(1)} (48)

and

[MIX+[KHR}= ~[M{Xoq- (49)

Following the modal analysis described in the Appendix B, one
obtains a reduced-order model fomwith a quasi-static correction
(QSQ for RQS. When using Eqs(48) and (49), note that the
initial conditions areX|;_o=0 and X|;_o=0, and thusx|_g

=Xgdi=0=0, andx|i—o= —Xqdi=o-

Figure 11 shows a typical dynamic response using the reduced
order model approach with and without quasi-static correction
and, for reference, the response determined from the full original
nonlinear equations for=0.01 andAy/o=0.1. Also, for refer-
ence, a result from a full perturbation linear model, i.e., using all
modes in systenib) and a linear perturbation model for system
(a), was obtained. For the chosen valuef\gf o and u this result
was the same as for the full nonlinear model. Figur@ajlshows
the dynamic response at the free end of the chain versus the non-
dimensional time,r. The solid line indicates the result when all

Transactions of the ASME
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Fig. 9 Deflection response between last two atoms, rilo=(x,—x,-1)l o, versus 7 for several different
Aglo and u

modes(100) are included, i.e., the original full equations, and the Figure 11b) shows the rms deflection amplitude for each atom
broken line is the result using only the first two modes withousf the macromolecular chain for the different modes included. The
QSC, and dash-dot line is the result using only the first two modggreement between the full and reduced-order m¢idel mode$

with QSC. The two results using the full modes or only tWQuith QSC is very good. However it is very poor near the excita-
modes with the QSC are very close. However, the computatigi, onq of the chain when only using two modes and still poor

time using the reduced-order modelko modes is only 11% that . . . .
of the full model. The results for only one mode also provide 4sing ten modes without QSC. Hence the QSC is an important
Rart of the reduced-order model methodology.

good approximation for this case. Note, moreover, that when thé_ .
macromolecular chain consist of an even larger number of par-Figure 12 shows the total rms error versus the number of in-
ticles, the computational advantage of the reduced-order mo§bided eigenmodes foA,/0=0.1 and £=0.01 using the full

will be even greater. modes and reduced-order model with and without quasi-static cor-
rection. As expected, the total error decreases as number of in-
cluded eigenmodes increases. As shown in Fig. 12, the quasi-static
correction significantly improves the computational accuracy of
the reduced-order model.

Figure 13 shows a typical dynamic response using the reduced
order model approach with quasi-static correction for a nondimen-
sional excitation frequency ofu=0.05 and an amplitude of
Ay/o=0.1. Figure 181 shows the dynamic response at the free
end of the chain versus the nondimensional timd&;he solid line
indicates the results when all modd€$0) and the broken lines are
for the results using only the first two modes, and dash-dot line is
the result using the first five modes, respectively. The two results
using the full modes and only five modes are very close. Figure

;/Q

gl v v ! :
0 10 20 30 40 S0 60 70 80 90 100 13(b) shows the rms deflection amplitude for each atom of the

Eigenmodes number macromolecular chain for the different modes included. The
agreement between the full and reduced-order model when using

Fig. 10 Nondimensional natural frequencies of the system (@) five modes is very good. However, it is poor when only using two
versus the eigenmodes number modes.
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0 L the macromolecular chain foA,/o=0.075 andu=0.2. Eight
35 b . modes give good results, but five modes do not.
Summarizing the results of Figs. 11, 13, and 14 for the several
S 0r excitation frequenciesu=0.01, 0.05, and 0.2, and the corre-
was | without quasi-static correction -~ 4 spondingA,/a, the total rms error versus the number of included
g with quasi-static correction —e— eigenmodes with quasi-static correction is shown in FigallR\s
: 0% i is expected, whem increases, we need more eigenmodes in the
E TN . reduced-order model for a certain prescribed accuracy. For the
= 5, cases shown in Fig. 18) the system is responding to a relatively
3 101 o . i small excitation amplitude, thus the induced local nonlingan
&l ) i der Waal’s force between the last two atoms is weak. Now if the
4 T— e excitation amplitude is increased to s&y/o=3.65 for u=0.01
or s andA,/o=0.75 foru=0.05, the effect of the nonlinearity is more
5 . . X . . . . A . evident. These results are shown in Fig(H)5For comparison,
0 10 20 30 40 50 6 70 8 9 100 the results from the smaller excitation amplitude are also shown in
Included eigenmodes number the figure as indicated by the broken line. There is only a small
difference between the two sets of results for small and large
Fig. 12 Total rms error versus eigenmodes, for ~ Ap/o=0.1and  excitations. The reduced-order model with quasi-static correction
#=0.01, using the reduced-order model with and without quasi- still is quite accurate even in the presence of strong local nonlin-
static correction
T . y o 0l . T . .
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(a) Time history at the free end (b) RMS amplitude

Fig. 11 Dynamic response of the macromolecular chain using reduced-order model with and without the quasi-static
correction (QSC) for Ag/o=0.1 and p=0.01

Nondimensional time, ©

Figure 14 shows the rms deflection amplitude for each atom of

Equilibrium position,t/r

(a) Time history at the free end (b) RMS amplitude

Fig. 13 Dynamic response of the macromolecular chain using the reduced-order model with guasi-static correction
(QSC) for Ayg/o=0.1 and u=0.05
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=3
f=3
o

considered. Using the present reduced-order method, a multimass,
multiple degree-of-freedom model may be used to represent the

2

o008

8" protein, thereby significantly enhancing the physical fidelity of the

2 om model and its simulation with substantial reductions in computa-

i tional cost and complexity compared to other existing methods.

g 006 Other nanoscale devices and phenomena with significant non-

g ! linearities may be modeled in a similar way. For more sophisti-

E 0.05 cated physical and mathematical models, multiple static equilibria

—~ o004 b may exist and the choice of eigenmodes and the associated static

= 004 [ L :

S equilibrium will need to be addressed.

2 o,

721

S ool v N/ \ )

£ Full modes Appendix A

= 001} 8 modes with QSC -~ 4 . . . . .

5 5 modes with QSC ---=-+ Relationship Between a Finite Difference Model for Axial

zZ 0 L " L . Vibrations of a Beam Represented in Terms of Finite Differ-

0 20 40 60 80 10 ences and the Mass-Spring Model. For the spring-mass system

Equilibrium POSIUODJ/IS shown in Fig. 2, the potential and kinetic energies for a spring-

mass may be written as
Fig. 14 RMS amplitude using the reduced-order model with

uasi-static correction SC) for Ay/o=0.075 and u=0.2 1
q (QSC) olo ® Uszizl K(X;_1— %)) (A1)
=

earities. Future work will include adding more nonlinear elements 1 E o
to investigate the efficacy of reduced-order modeling under these TS_E “~ MXx;. (A2)
circumstances.

On the other hand, the potential and kinetic energies for the

Concluding Remarks axial deformations of a rod may be written as
By an appropriate choice of coordinates to describe the dynam- 1t [ou)\? EA )
ics of a high-dimensional system with nonlinearities that are local Uazzf EA( 5) dx= TAXZ (Ui—g—up)*/
or global, a substantial reduction in the conceptual and computa- 0 =t
tional complexities associated with such systems can be achieved. EA
If the nonlinearity is local, a combination of eigenmodal and dis- Ax2=mzl (Xi—1—X)? (A3)
{=

crete coordinates may be most advantageous. Applications to both
the macroscale, e.g., conventional springs and masses, and the 1 (L
microscale, e.g., Lennard-Jones potential, are illustrated. T.= f
Future work will extend the analysis presented heré€ljawo 2
and three dimensions an@®) a physically significant one-
dimensional model for an atomic force microscép&M) pulling
on a nanoscale specimen to generate, for example, protein fold
(“snap buckling” of a protein fragmentand the study of the

) 1 ., 1 .
mdx= = AxmY, U2==AxmD, 1 X2 (Ad)
o 2 =1 2
whereu;=x;, and a change of notation is introduced.
. Comparing(A3), (Ad) to (A1), (A2), an equivalence between the
gming-mass and axial rod models is obtained:

dynamics which determine re-foldinghysteresis”) of the pro- M =mAx
tein.
In Ref. [19] a simple low-dimensional model using a single K:E\
nonlinear spring/mass to represent the protein dynamics has been Ax’
50 T y r 30 T T
; 5t =001, A/a=3.65 —e—
a0t i . P=0.01,A/6=0.1 -werrerm
i ° pn=0.05,Ay/0=0.75 —eo—
I ¢ R 0t 1=0.05,Ay/0=0.1 -wrereee- 1
Sl o =0.01 and Ago=0.1 —e— 13
g 0 ' ﬁ:o.osand%cﬂj ----- o E sl
k) 1=0.2 and AyG=0.075 --—- °
[} Y i
Ear 4 1 Ew
El E
S0t 5 { B st
. ."x.,___,_.__ ol \‘k
o T
0 5 10 15 20 0 2 4 6 8 10
Included eigenmodes number Included eigenmodes number
(a) Weak local nonlinearities (b) Strong local nonlinearities
Fig. 15 Total rms error versus eigenmodes for different excitation frequency;, p©=0.01, 0.05, and 0.2, using the reduced-
order model with quasi-static correction. (a) For smaller excitation amplitude  (weak local nonlinearities ) and (b) for

larger excitation amplitude  (strong local nonlinearities ).
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For a continuum axial beam model, the Euler-Lagrange equa-Using Lagrange’s equation with a Lagrange multiplier to en-

tion is force the constraint equation, one obtains
Pu du b beo
EAW'FIT]W:O. Milby+ (wp)“by]—NE;,=0 (B7)
The general solution for the differential equation(&suming AU(re, )
simple harmonic motion with the goal of obtaining the natural MP (X +HT )+ —— = (B8)
frequencies INisa
2 2 o
/Mo . [Me M2, (XP+12 )+A=0 (B9)
= — %+ — x. 1+ T
u=Acos EAX B sin EAX
The boundary conditions ate=0 atx=0 anddu/dx=0 atx and the constraint equation becomes
=L. ThusA=0 andB+0, and the eigenvalue solution is
mo? X'= Z Einby . (B10)
—_— = n
cos EA L=0
or Note that in this formulation, the only nonlinear term appears in
- ) ) (B8) through the gradient of the potential energy between the two
MwL® (|\* (3w masses furthest from the “wall.” This formulation is readily gen-
EA |2) 12" eralized to several particles in systéa) and to two and three-

dimensional arrays of particles. Of course, the computational

Thus the equivalence between discrete and continuum modglsy,

is
mszz_M »? A 2NZ_MwZN2 m\? [3m)\?
EA ~ ax Kax A Ne=—=Ne={ 7] 5]
as Np— o,
or
M T 37
EwaHE,T, ...as Nb*)OO_ (A5)

See representative numerical results in Fig. 2.

Appendix B

Equations of Motion for the EigenmodédParticle Model
Governed by the Lennard-Jones Potential. The kinetic and
potential energies of systefth) expressed in terms of eigenmode
coordinates are

1
Tp=5 >, MEb2 (B1)
2n:1

N
l b
Us=5 2, Ma(wp)’b; (82)
whereN,, are the(dominanj eigenmodes of systeth) andwﬁ are
the natural frequenciegigenvalues
System(a) is represented in terms &f andx?, ; or x, ; —x{'
=r{,,. Thus the potential and kinetic energies of systejrmay
be written as

Ua=U(ryy) (B3)
1 a La_ na 2

Ta:§M|+1(X|+r|+1) (B4)

and the constraint equation is
x2—xP=0. (B5)

Now

XP=2 Einby (B6)

n

where E,,, is the appropriate transformation obtained from the

eigenvectors of systelti).
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plexity increases as the number of particles in sys@nm-

creases. But in the present formulation this number will be much
smaller than in more conventional approaches involving a particle
representation for both systef@ and (b).
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Coefficients of Restitution Based
cungsen 1ot | ON @ Fractal Surface Model

Associate Professor

e-mail: ¢jlu@ccms.ntu.edu.tw Equations of rigid-body mechanics provide a means to predict the post-collision behavior

) without recourse to highly complex, detailed analysis of deformations during contact.
Ming-Chang Kuo Before the prediction can be completed, the coefficient of restitution, which relates the
Graduate Student rebound velocity to the incident velocity, must be estimated properly. The coefficient of

restitution depends on the surface topography in addition to the material properties and
Department of Mechanical Engineering, incident velocity. Recent investigations showed that surface topography can be charac-
National Taiwan University, terized properly by fractal models. This paper proposes a normal contact model for a

No. 1 Roosevelt Road, Section 4, fractal surface in contact with a rigid smooth half-space. The fractal surface is con-
Taipei 10617, Taiwan structed based on the Cantor set and composed of elastic-perfectly plastic material.

Asymptotic continuous expressions for the load-displacement relations during loading and
unloading are derived. Based on these results, we study the effects of surface roughness,
material properties and incident velocity on the coefficient of restitution.

[DOI: 10.1115/1.1574063

1 Introduction for elastic-plastic contact is known, the rebound velocity and

The analysis of impact phenomena has important applicatiohgnce the coefficient of restitution can be determined. However,

in different fields. For example. impacts between the slider ande compliance relationship for elastic-plastic contact is not pre-
. . : pe, Imp o ; r?:sely defined, so that a theory of elastic-plastic impact is neces-

disk greatly mfluence the .r?"ab'“ty of magnetic disk drives. .Acéarily approximate. By choosing suitable compliance relation-

curate analysis of the collision between two deformable bOd'eséﬁips the dependénce of the coefficient of restitution on the

difficult and time-consuming even for the large-scale comput naterial properties, incident velocity, and radius of the ball can be

tional capabilities developed recently. If the local deformations imated[1—3]

the contact area and the transient response during collision are ho, :

. L . e - Il engineering surfaces are rough in nature and have random
of interest, the colliding bodies can be treated as rigid for pred'qﬁ'eight distribution[4,5]. The compliance relationship of real bod-

ing the post-collision behavior. In this case, a coefficient of restisg“janends closely on the waviness and roughness of the contact

tutipn, purports to describe the energy loss pluring COI.”Si.On' mussﬁrfaces[3]. Therefore, it stands to reason that surface topogra-
be incorporated to relate the rebound velocity to the incident v y of contact bodieslwill have a large effect on the collision

lﬁCit.V' then thﬁ impacf:f@ is perpf)endigulgr to tgernorcri]inalbplap]e rocess, especially at the initial stage of compression. Several
the interface, the coefficient of restitutianis defined to be the , papijistic theories have been developed to model the mechani-
ratio of the rebound velocity to the incident velocity. Values of5| pehavior of contacting rough surfacé6—11. One of the
e=1 and.e=.0 denote the |<1!eallzed concepts of perfectly Qlast ost popular models is the Greenwood and William¢G&w)
and.ple}stlc impacts, rgspgqtlvely. Introduction of the coefﬁmgm odel, [6]. In this model, the rough surface is represented by a
restitution greatly simplifies the procedure for determiningq)iection of hemispherical asperities having a constant radius of
the post-collision motion. The success of the rigid-body impagt,ryature. The heights of the summits are distributed normally
ana!ys[s depends on the correct estimation of the coefficient 98t the mean asperity plane and it is assumed that the contact-
restitution. o o __.ing asperities deform elastically according to Hertz theory. Chang

An important subject is how the coefficient of restitution iss 3. [12] modified the G&W model and proposed an elastic-
related to the basic physical material properties. TdbigrGold-  pjastic contact model of rough surfaces. Based on this model,
smith [2], and Johnsor{3] considered the impact between &chang and Ling13] derived the relationship between the coeffi-
sphere and a stationary half-space at moderate impact velocitiggnt of restitution and the surface topography. However, recent
Both colliding bodies were assumed to be smooth. As indicated By dies showed that conventional statistical parameters used to
Johnsor3], when the impact velocity is small compared with theharacterize the surface topography, including the summit radius
elastic wave velocity, the static contact force-compression law cgithe G&W model, are not unique to a surface. These parameters
be employed to investigate the impact behavior. Under this coflepend on the resolution and scan length of the roughness-
dition, the coefficient of restitution can be estimated based Qﬁeasuring instrumen{,14—17. This result suggests the use of
principles of energetics. Up to the instant of maximum comprefactal geometry[18], for the characterization of surface rough-
sion, the initial kinetic energy transforms into strain energy, elastifess. Lately several fractal surface models have been proposed to
and plastic, of the two colliding bodies. After the point of maxigescribe the interaction between rough surfaces in different areas,
mum compression, there is a release of elastic stresses and[lt'@lg_24_ Majumdar and Bhushaf21] used the Weierstrass-
kinetic energy of rebound is equal to the work done during elastigandelbrot function to simulate surface roughness and employed
recovery. If the compliance relationship of load and displacemegfodified Hertz equations to model the elastic-plastic deformation

of the surface. Borodich and Mosol¢23] constructed a fractal
1CTO ‘{V'ZOT g%rre;pogdelhcg fﬂhmﬁ'd be %dd_ressedﬁEAMERmN ooy OF rigid die using the Cantor set. They derived asymptotic compli-
ontripute: y the Applie echanics Division O H H H ivid-

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ance expressions for the fra(.:tal die penetrating a r.lgld perfectly
CHANICS. Manuscript received by the ASME Applied Mechanics Division, O(:tobepIaStIC half-spacg and elastic half-space: respectlvely. Warren
10, 2001; final revision, September 9, 2002. Associate Editor: K. T. Ramesh. Disc&t- al. [24] generalized the method of Borodich and Moso|2g]
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekinﬁ;y allowing the fractal surface to deform. A continuous
Department of Mechanical and Environmental Engineering University of Californias : ; : ; _
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until f&lsrymptouc m(.)d6| mcpr_poratlng volume_conservatlpn was devel
months after final publication of the paper itself in the ASMEURNAL OF APPLIED oped to descnbe the _”g'd'perfeCtly elaSt!C_de‘formatlon of a fractal
MECHANICS. surface in contact with a smooth and rigid half-space. Although
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much work has been done on the normal contact behavior be- Reference Plane
tween rough surfaces using fractal surface model, little attention
has been devoted to the significance of the fractal parameters ONgigid
the coefficient of restitution. Half-space v
The purpose of this paper is to investigate the effect of surface
roughness on the coefficient of restitution. We consider a fractal
surface composed of elastic-perfectly plastic material in contact
with a smooth rigid half-space. Following Borodich and Mosolov
[23] and Warren et a[.24], the fractal surface is constructed based
on the Cantor set. Continuous asymptotic compliance relations
during loading and unloading are derived, respectively. These re-
lations are then used to express the coefficient of restitution in
terms of surface topography and material properties, in addition to
impact velocity.

hig u=nh;

Y

2 Cantor Set Surface Model

The Cantor set surface shown in Fig. 1 is constructed by joining Rigid Foundation
the segments obtained from successive stages of the Cantor set. At
each stage, the middle sections of the previous segments arerig- 2 A Cantor set surface in contact with a smooth rigid
moved such that the total length of the remaining segments js 1half-space
times that of the previous segments. The recess depth anthe (
+1)th stage is 1/, times that at thenth stage. Therefore, the
horizontal length at thath stage is

= (1)l 1= (L )" @ as an axially loaded rod and there is no interaction between the
" Xl X7 o rods. Thus the total load applied to the rigid half-space is the sum
while the recess depth is of the contact load of each asperity.
hn=(1/f,)hn_1=(1/f,)"hg. 2 3.1 Load-Unload Behavior of a Single Rod. Consider the

load-unload behavior of a single asperity first. The displacement
of the rigid half-space is measured from a reference plane that is
H* apart from the bottom of the ro@Fig. 3. The distance be-
Inf, In2 tween the top of the rod and the reference plarte iswhen the
T In(2f * In(2f.)’ ©) rigid half-space with a displacemeatis in contact with the rod,
n2fy In(2f,) . /
the strain of the rod is

As shown by Borodich and Mosold23], the fractal dimensio®
can be related to the fractal parametgrandf, as

D=1

where 1<f, and 1<f,<2. The fractal dimensio® along with
the parameterky, hy, fy, andf, can be determined experimen- u—h;
tally from a surface profile of the rough surface using the method STH*_n - (4)
proposed by Warren et dl24]. !
In the elastic regiong;<e,, the contact loadP; is

3 Normal Contact Model Pi=Eg;s, (5)

Consider a Cantor set fractal surface of unit depth in contagheres denotes the contact area. It can be easily shown that the
with a smooth rigid half-space as shown in Fig. 2. The roughception of plastic deformation occurs when the displacement of
surface is modeled as a Winkler foundat{@] of thicknessH*  the rigid plane reaches, ,
and composed of elastic-perfectly plastic material with Young'’s .
modulusk, yield stresso,, and yield straire,= o, /E. A load is uy=gy(H*—hj)+h;. (6)
applied to press the rigid half-space into the rough surface apd; -,  the deformation is uniformly plastic and the corre-
then removed gradually. The loading and unloading process %ndingyé:ontact load is
be considered as quasi-static. Assume that each asperity behaves

Pi=0,s=Eegys. (7)
< I
l«— L/2 — Reference Plane
hid W i
1:/8 ’—|4. . u '
I i Rigid Half-space

T

Rigid
Foundation

Fig. 3 A single asperity in contact with a smooth rigid half-
Fig. 1 Fractal surface constructed from the Cantor set space
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Then consider the unloading behavior of the rod. Assume that the ny ny
rod is unloaded from a maximum straip,,c>¢y . Let o, andP,, D> osi=> (i=lii)=ln~ln i1, (16)
indicate the stress and load during the unloading process, respec- i=ng i=ng v
tively. Then . )
2 ny_ pnot
P,=0.s. 8 > hisi=hol o( 1— i) [—'B A , 17)
i=ng fx 1-p

Due to the plastic deformation, there is a residual stsqimhen
the load is removed. In the unloading stagg,is related tos by  \here

o,=E(e—g,). 9)

B=1I(f,f,). (18)
Using the fact thatr,= o, whene = g, it follows that ) ) ] )
By using these relations and choosing suitable upper and lower
Er=Emax Ey- (10)  Jimits for each series, Eq15) can be rewritten as
Thus, the dependence of the contact load during unloading on the h n Nl Nt
displacement has the form E: _0 (i (i N
Py eH* [\f, fy fy
P,=0 o o Umax | (11) 1)/ gn+1_ gne+1 1\net1
B
fx 1-p fx '

3.2 Load-Unload Behavior of the Fractal Surface. First,
consider the loading process. When the rigid half-space reachgsere
the nth stage of asperities, the asperities aboverithestage are
compressed. The strain of thth stage of asperities can be ob- Py=ayly. (20)
tained by replacingi in Eq. (4) with h, as ) )

The total contact force for purely elastic deformation can be ob-

h,—h; tained by lettingn,— o0 in Eq. (19) and the result is
i =TT % —h (12)
H* —h;
Pn hO 1 n 1 n+1 1 Bn+l
It can be shown that¢;>eg;, for i>j>n. Therefore, when some P o\ T - 1- ol\1=5l I (21)
stages of asperities deform plastically, we can find a critical stage, Yy gy z X X B

the n¢ th stage, such that the asperities above the critical stagge, e proceed to study the unloading behavior of the fractal
deform plastically while those below the critical stage deform,, face. Letu,,, denote the maximum displacement of the rigid
elastically. Then the contact lod#, can be expressed as half-space, and, the corresponding critical stage. That is to say,

e * whenu=u,,, asperities above the, th stage have plastic con-
P,= E Eesi+ 2 oy, (13) tact v_vhile those below thﬁc_ 'gh stage have t_alastic contact. For_the
i=n+1 i=nc+1 elastically deformed asperities, the load-displacement curve in the

unloading process coincides with that in the loading process. On
the other hand, the load-displacement relationship of the plasti-
lly deformed asperities during unloading is described by Eq.
1). When the rigid half-space is withdrawn to a stage below the
critical stage, say theth stage, the total contact load can be
expressed as

wheres; denotes the contact area of il stage of asperities. The
first term on the right-hand side of E(L3) represents the contact
force due to elastic deformation, while the second term due ?
plastic deformation. By using Eq12), the elastic contact force
can be expressed as

i=ng

n i=n
S ¢ h,—h; E h,—h; - "
2, BeST 2 BN T 2, ST R R SN R e e
I=n I=n n I=n I = 3 J e .
17H_*) RS SqH*—hi i<t 1 i H*—h Y
Assuming that;<H* and neglecting the higher-order terms, theor stages above the critical stage, due to the plastic deformation,
above equation reduces to the separation between the top of each stage and the reference
ne ne plane when the load is removed is different from the original
Ees~ — s(h.—h 14) Separation. Leh; denote the separation of the top of flte stage
izgﬂ EIS 1w i;n‘il i(Na=hi) (14) and the reference plane at the end of the unloading process. When

the rigid plane is withdrawn to thath stage that is above the

Substituting Eq(14) in Eq. (13) yields the contact force as critical stage, the total contact load can be expressed as

ne 0

E -
Pomppr 2 Stha=htoy > s (19) e S Es(u—um

¥ +ey|, u=h,<h,.. (23)

H*—h, %Y

=n+ i=n.+1

i=n+1
This equation contains two different forms of series3as and
>h;s; . From the definition of Cantor set and using E¢b.and Following the same procedure for analyzing the loading behavior,

(2), these two series can be expressed as we obtain the total contact force during unloading as
|
u (1 1) R (BT L (Ul _
— = S
p EyH* f)r2+l fnc+1 SyH*fX 1_3 e fnc+l H* €y u hn, n=ng
u X Y x
5= (24)
Y 1 (U= Una —
P! fnﬂ(—H* +sy) u=h,, n.<n
y'x
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3.3 Asymptotic Analysis. In this section, we proceed to de- log( x)
rive the asymptotic load-displacement expression. The difference n.= . (32)

between the heights of protrusions of ftie and { + 1)th stages log(f2)
diminishes as— <. Whence, the displacement can be treated agt@acan be shown that
continuous variable in the range> 1. From the definition of Can-
tor set and the expressian=h,, we obtain (Uf)"e=x* and Ble=y1te
log(u/hg) After substituting the above relations into E¢$9) and (21), we
T oot (25)  optain the following load-displacement relations for purely elastic
log(f,) . ; . \ ;
deformation and elastic-plastic deformation, respectively. For
and purely elastic deformation,
1\" u 1+«
o I T P S
z 0 Py \g,fH 1-8 |lhg

Subsequently, it can be shown that for 1, For elastic-plastic deformation,

e A B B WY

&

Py e H*f ho
in which voET "
f—1 a a
log(f) s —% (hi) ~ e +)f‘—. (34)
“~ og(T,) a ° *

Then we need to know the relationship between the critical sta eBy a.S|m|Iar prqcedure, we proceed to analyze the asymptotical
loading behavior of the fractal surface. Let,, denote the

n. and the displacement of the rigid half-space. When the rigmaximum displacement of the rigid plane, anglbe the corre-

surface reaches tieh stage of asperitiesih,), the asperities esponding critical stage. From the definition of the critical stage, it

above thencth stage deform plastically while those below th .
critical stage deform elastically. In other words,, <e can be shown that the dl_stance between the top oh{fte stage
¢ 7Y and the reference plane is

<en i1 Using Egs.(2) and(12), we obtain

(1)%+l ho—H*e, u—H*e, (1)% ” ha,=Noxw » (35)
J— $ = J—
f, ho(l—e&y) ho(l—egy) \f, (29) where
Let B Umax— &yH* 36
u—H*e, (30) Xm= (1—gyhg * (36)
X=hi1—e:
ho(1-ey) The distance between the-th stage and the reference plane due
Equation(29) can be rewritten as to the plastic deformation after the load is removed is
log(x) 1 31) P = Uy £y H* . (37)

ne<-— W S
o During unloading, when the rigid plane is withdrawn to a position
As can be seen from E@29), if u/H*<sy, n. does not exist. below the critical stage, the deformation of the fractal surface is
This indicates that the deformation is purely elastic. On the othpartially plastic. On the other hand, when the rigid plane is with-
hand, if u/H*>¢,, nc~n+1. This implies that ther(+1)th drawn to a position above the critical stage, the fractal surface has
stage yields when the rigid surface reachesrtiestage. Hence, purely plastic deformation. For these two cases, the load-
the fractal rough surface almost has purely plastic deformatiogisplacement relationship during unloading can be, respectively,

For asymptotic analysis define expressed as
|
u/h u\® f,—1)BL(u/h) = xu T [(u/hg) = (Umax/h "
( *0) u _)(L,\; _ (fx ),8[*( ) XM n ( 0 (* max/ No) el ﬂ hchu<umax
P e,f(H*/hg) | | hg ey(H*/hg)f (1) eyH*/hg fy
P_y_ 1 u l1-eg, atl — - 9
XM h,.<u<hy
fx(H*/hg) \ eyhg £y ¢
I
4 Coefficient of Restitution a given incident velocity;, the maximum displacement of the

rigid planeu,., at which the relative velocity between two im-

Consider a rigid body with smooth flat contact surface a%acting bodies vanishes, can be obtained by

proaching the stationary fractal surface with an initial veloeity

Following contact a short period of deformation takes place until 1, Umax
mv{= P(u)du, (39)

the relative velocity between the two impacting bodies vanishes. 2
At this instant, the fractal surface has maximum deformation, and

the initial kinetic energy transforms into strain energy stored Wwherem is the mass of the rigid body arflis the contact load
the fractal surface if the energy contributed to the elastic wawiring loading as described by E(3) or (34), depending on
propagation is negligible. During the remainder of contact a pehether plastic deformation is induced. For purely elastic contact,
riod of restitution occurs until the contact area reduces to zero. Heq. (33) should be employed. In this case, all the strain energy

0
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stored during loading will be recovered to kinetic energy. Thi 0.28
rebound velocity of the rigid body at the end of the period o
restitution is the same as the incident velocity. And the coefficiel 0.24
of restitution is unity. For a plastically deformed fractal surface
plastic deformation occurs during loading and only elastic defo 0.20
mation is involved during unloadingl]. The strain energy re-
leased during unloading transforms into kinetic energy of the rigi , 0.16
body. Therefore the rebound velocity is obtained by g

Elo, =800

fx=1.2

012 [

1 umax
Emugzj, P (u)du, (40) |
h., 0.08

where the unloading contact lo&y, is described by Eq38). The
coefficient of restitution is obtained by

Umax 12 0.00 o . ! ’
j P(u)du 0.00 0.01 0.02 0.03 0.04 0.05
Uy 0 uth,
N — (41)
U1 ™p (u)du Fig. 5 Load versus displacement as a function of Young's
u . .
modulus-to-yield stress ratio

5 Results and Discussion

First, we verify the asymptotic load-displacement relationshif\s can be seen from the figures, the deviation between the
Figures 4a) and (b) show the comparison of the asymptoticdSymptotic and series representations increases with the displace-
(solid and series (dashedl representations of the load-ment, as expected. Besides, for a fixed valué,ofthe deviation

displacement relationship for various values of fractal parametepgtween the asymptotic and series representations increases with
f,. It is observed that the deviation is less than 10% in the range

u/hy<<0.04. In the following discussion, we confine the displace-
ment in this range and use the asymptotic representations to study
the effects of material properties and fractal parameters on the
=12 =18 coefficient of restitution.
0al H*/h=10 . Figure 5 shows the load-unload curves at various Young's
| Eloy=g00 LT modulus-to-yield stress ratios. As can be seen from the figure, for
e a fixed value of displacement, the load increases with the Young’s
03t 15— modulus, as expected. The unloading curves exhibit an initially
R linear response. This is due to the elastic recovery of the fractal
A - surface. Bhattacharya and N[26] have shown that materials
02l / with a larger Young’s modulus-to-yield stress ratio exhibit greater
residual depth under a fixed maximum displacement, which is in
agreement with the results shown in Fig. 5.

0.5

PP,

01} 1.2 The significance of fractal parametefrg and f, on the load-
unload curves is shown in Fig. 6. As can be seen from Fig. 6 that,
when f, is held constant, the load required to produce the same

0.0 R : ' , , , , displacement increases with. This is due to the fact that a larger

000 001 002 003 004 ?J‘,?fj 005 007 008 009 010 f, indicates a smoother surface. Equati®3® and(34) show that
the parametex=log(f,)/log(f,) has an import effect on the load-
(@) ing curve. Sincex is positive, for purely elastic deformation, the
load scales as the displacement to a power greater than one.

016 Therefor_e, all the loading curves in Fig. 6 are in_it_ially convex. As

=15 =18 the loading progresses, more and more asperities d_eform plasti-

0141 Hehg=10 ’ ca_lly and the last term in Eq34) be_comes more significant. In

E/o=800 this stage, the load scales as the dlsplacement_ to a power greater

0.12 Y than one forf,>f,, but less than one fdr,<f,. It is observed in
Fig. 6 that, as the loading progresses, the loading curve is entirely

o10r convex fora>1, while changes from convex to concave fer

08| <1
e Figure 7 shows the coefficient of restitution versus the dimen-
o6t L~ T sionless incident velocity for different values of the Young's
______________ modulus-to-yield stress ratio. The dimensionless incident velocity
004y V* is defined ad/* = Jmu?/(21,Eh,). The coefficient of restitu-
ooz b tion is equal to unity when the incident velocity is lower than the
) critical velocity at which onset of plastic deformation occurs. The
. ] critical velocity decreases with the increasing Young’'s modulus-

0.00 ; ‘ ' ; ; : "
000 001 002 003 004 005 006 007 008 009 010 t{o-yjeld stress ratio. Once the velocity exceeds the critical veloc-

urh, ity, the coefficient of restitution is less than one because some

b) energy is dissipated in plastic deformation. The area enclosed by

the load-unload curve and the horizontal axis represents the en-

(dashed ) results of the load-displacement curves for various increases with the Young’s modulus-to-yield stress ratio for a
values of fractal parameters, (a) f,=1.2, (b) f,=1.5 fixed value of maximum displacement. This is due to that most of
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E/oy=800 : o=
0101 g E/0,=800
2
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Fig. 6 Load-displacement curves for different values of fractal ’ : ’ X ’ .

parameters (a) f=14 (b) =18 0.0000 0.0004 0.0008 0.0012 0.0016 0.0020 0.0024 0.0028
' o o Dimensionless Velocity v*

(b)

the asperities are deformed plastically when the Young’s modulbig- 8 Coefficient of restitution versus incident velocity for dif-
to yield stress ratio is large. Figure 7 confirms that the coefficief@rent values of fractal parameters,  (a) f,=1.5, (b) f,=1.5
of restitution decreases as the ratio of Young’s modulus-to-yield
stress is increased.

The effect of the fractal parameters on the coefficient of resti-
tution is shown in Fig. 8. Figure(8) shows the coefficient of ficient of restitution decreases rapidly with the incident velocity.
restitution versus the incident velocity for various valuesfpf As incident velocity increases, the coefficient of restitution be-
while f, is held constant. The critical velocity increases with comes less sensitive to velocity. A similar trend can be seen from
Once the incident velocity exceeds the critical velocity, the coefrig. 8b) that the coefficient of restitution decreases with increas-

ing fy.

N
o

6 Conclusion

We studied the effect of surface roughness on the coefficient of
T restitution. We proposed an elastic-perfectly plastic contact model
- for a fractal surface in contact with a rigid smooth half-space. The
fractal surface was constructed based on the Cantor set.
Asymptotic analysis was performed to derive a continuous load-
displacement relation. The result shows that the compliance rela-
tion depends strongly on the fractal parameters that characterize
600 the surface topography. Based on the load-displacement relation,
we investigated the significance of fractal parameters as well as
material properties and incident velocity on the coefficient of res-
800 titution. It is found that materials with high Young’s modulus-to-
057 ‘ . yield stress ratio have smaller coefficient of restitution. Upon the
0.0000 0,000 0.0008 0.0012 0.0016 00020 Point the incident velocity exceeds the critical velocity, the coef-
Dimensionless Velocity V* ficient of restitution drops fast with the incident velocity. The
sensitivity of the coefficient of restitution to the incident velocity
Fig. 7 Coefficient of restitution versus incident velocity as a decreases as the incident velocity increases. The coefficient of
function of Young’s modulus-to-yield stress ratio restitution decreases with increasing fractal dimension.
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1 Introduction where p is the freestream fluid density angA) is the virtual

. . B : i . . mass, per unit length, of a cylinder circumscribing the cross sec-
Lighthill [1] used the “slender-body” approximation of Munktion of the surface, andpfd) is taken here to be constant.

[2] to work out the inviscid flow and corresponding instantaneous The dynamic deflection of a thin elastic beam, having density,

”{t pc(fr Lleni}E( Iength, power, thruztl,. atnd FrOl;de ef‘fic_if(endqt/. for %b cross-sectional ared,, elastic modulusk, and moment of
slender fishlor swimming mammalin terms of a specified time- : 2’ . y : v
dependent surface shape. The results were presented in terms'0 gla, !, is governed by the following equation:
virtual mass per unit length and time averages of functions de- a?h(x,t) a*h(x,t)
pending on the slope and normal velocity component of the trail- (PbAb)T:F(Xst)_(EI)T (2
ing (or free edge of the surface. Since the time-dependent surface
shape was not known a priori, Lighthilll] suggested various where F(x,t) is the instantaneous beam loaditfgrce per unit
oscillatory surface motions. In another study at about the saremgth.
time, Wu [3] imposed oscillatory surface motions for a two- In our problem, the beam inertia is taken to be much less than
dimensional flat fish. For many applications, however, the shapelig inertia of the virtual mass of fluid ppA,) <(pA)]; then, us-
a result of the fluid motion and vice versa. That is, the fluid-solithg Egs.(1) and(2) whereF(x,t)=L(x,t),
interaction problem is of the moving boundary type. 4 2

The presently reported work does not assume a time-dependent (EN) a"h(x,t) +( A)(3+U i) h(x,t)=0 3)
surface shape, but rather calculates it by incorporating Lighthill’s ax* P ot ' '

[1] relationship between the fluid mechanic force and the surfa?:
I

shape into the equation defining the elastic deflection of a Eu Iﬁls_gwes the quasi-static deflection of the beam under dynamic
Bernoulli beam. oading that depends on time-varying inertia forces in the sur-

rounding fluid. Forced motion of the boundaryxat O drives the
) motion of the surface. In the present study, this forcing is consid-
2 Analysis ered to be periodic. Hence, a steady-periodic solution was sought
of the form h(x,t)=Relh(xt)}, where h(x,t)=hy(x)e'“!, and
“Re” indicates “real part,” “ [’ indicates complex variable, and
w is the frequency of the imposed motion.
The steady-periodic solution of E¢3) for the (complex fin

shape is

Force/Deflection. Takex to be in the direction of the uniform
freestream velocity relative to the swimme, (Fig. 1). The local
fluid mechanic lift force per unit length, (x,t) = dF,/dx, is re-
lated to the local, instantaneous surface shape,t), by the fol-
lowing equation(Lighthill [1])

h(x,t)=e' @+ [ &, cog px) + C,sin( ¢x)]
L(x,t)=—(pA)

i +U i )2h( t) 1)
X‘ . ~ ~

o ox +e/@=M[Cycostiyx) + Cysinh(yx)]  (4)
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0,50 This amounts to a representation of swimming technique in terms
of an angular locationg, called theleading edge coordination
77 angle at which the magnitude of tHeading edge slop&s maxi-
2 2 z L = mum, hg.
—— — /"" 1 1 Vanishing shear and moment at the free émdiling edge of
- ; 4 the fin,x=1, provide the remaining two boundary conditions:
- """:" {
| b A
o.00 =
"E‘ LPs .y P X hxx(l :t) 0 (10)
— o ~
' hy,(1,t)=0. 11
f: h'.-'::h., :: TE ool 1) ) (11)
_f_,, o Then, using Egs(8)—(11), the constants of integratio;, are
% obtained from the solution of the following linear system:
-0.50- 1 0 1 0 o
| | _ C1 ho_
T DIRECTION OF i ¢ —id vy c, hyoe '@
[ MOTION OF SWIMMER . ~ R LIX] AT = (12)
: KN T 3 Ty C3 0
! SFEED =U N - N . - 0
T To T3 T C
where
-1.00 B - b _
40 2l i s in=e""[—(¢?+ 8%)cos pl) —i(25¢)sin(¢)]  (137)
Distance (m) Fro=et1 —(o2+ 5%)sin(¢l) +i(25¢)cog ¢l)]  (130)
Fig. 1 “Fin signature” showing the measured local, instanta- ra=e [+ (2= 8%)costiyl) —i(28y)sin(y)] (1)
neous slopes of the “leading edge”  (LE) and “free end” (trailing . s 5 o .
edge (TE)). The numbers, 1-22, indicate LE and TE segments ma=e Y[+ (y*—5%)sinh(yl)—i(28y)coshyl)] (13d)

at 1/15 second increments. The fin shape is sketched in for
segment number 7. Note that  x=0 is fixed to the LE and x=/is and

atthe TE. F1=e 19 1 (24 38%)sin ol) — i (3562 + %) cog ¢l)]
(144)
where T,=e" I —(e3+38%¢)cog ol ) —i(36¢%+ 8%)sin(¢l)]
(14b)
=(El)/(pA) and B=4walU? .
T VEDIpA) and frdor  agme [+ (- 38 y)sinh(o1) — (382~ 8%)costi )]
Equation(4) indicates the presence of two waves traveling in (140)
the beam at the same wave speedp2U, but in opposite direc- ,
tions. T,=e [+ (y2—368%y)cosh{y1)—i(38y?— 8%)sinh(y1)].
(14d)

Boundary Conditions—Swim Fin. The experimentally ob- _ o
tained “fin signature” from Samimyf4], shown as Fig. 1, was The power,P, thrust, T, and Froude efficiencyy:, averaged
used for guidance in determining the boundary conditions to eaver one cycle of time period,,=1/f, follow from Lighthill's
emplify the mathematical model as it applies to underwater famnalysis[1]:
swimming. This “fin signature”(Fig. 1) shows a “trace” of the
leading and trailing edged E and TB of the fin taken from a P= _( 1) f” f' h L
: A -~ < =—|— —L(x,t)dxdt (15a)
video of underwater fin swimming. to) Ji—o)x=0 0t
For a given human subject, the effectiveness of a fin varies and
there is interplay between the fin type and the swimming tech- _ 1\ (% [dh(oh oh
nique to achieve performance goal®endergasf5]). For ex- P=(PA)U( )J [E( )
ample, there is an inverse relationship between kick depth and !
kick frequency that varies with fin geometry and fin stiffness 1\ [t (1 h 2
. p oh
(Pendergasits]). . o T=P/U—[(pA)/2](—)f f —+u—) dxdt
The fin leading edgex(=0) is taken to be at the beginning of ty) Ji=oJx=0\ ot X
the flexible part of the fin, near the toe of the swimmer, down- (16a)
stream of the rigid “foot” of the fin. The trailing edgexE&l) is at . 5 )
the free end of the flexible region. It is over this portion of the fin T=[(pA)2]| = plf[dh _u2? i
(i.e., 0=<x=<I) that Samimy[4] studied its elastic behavior. It is P ty) Jicol [\ at IX
then natural to specify the peak to peak amplitude of the kick,
2h,, and the kick frequency,= w/(2). Further, an analysis of 7e=TU/P. 17)
video of underwater fin swimmingand as will be shown in later
figures Samimy[4] shows that the motion of the leading edge i% Results
approximately harmonic, i.e.,

t

5 + o dt (150)

x=0

p =0

1%

dt (16b)
0

X=

The results can be conveniently presented in nondimensional

h(0t)=hee'". (8) form by choosing the characteristic lengths foandh(x,t) to be

Similarly, the analysis shows that the slope of the leading edgeli§ndho, respectively, and the characteristic time fao bew ™.

also approximately harmonic at the same frequency with ampfauations(3) and(8)—(11) then become
tude, h,,, but shifted in phase by, i.e.,

h,(0,t) =h,ge' (@t~ 9, 9) (7)) Hxxxxt

P 2,
Sa_r+_) A=0 (18)
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Fig. 2 Calculated fin shapes, H(X,7), as a function of X during DIRECTION OF
the kick cycle. Numbers denote increasing multiples of time, 7 MOTION OF SWIMMER
in /4 increments. <
SPEED=U
N : -0.5 8 0.5
H(0,r)=¢'" (19) Distance (m)
F4(0,7) = ke'(7= (20) Fig. 4 Fin signature computed for the experimental conditions
R of Fig. 1. The time interval between each fin traceis1 /5 second.
Hyx(1,7)=0 (21) The symbols (connected with lines ) are measurements from

Samimy [4]. The numbers correspond to those in Fig. 1.
|:|><x><(1,7'):0- (22)
The resulting nondimensional groups are the Strouhal number . . L )
S, an elasticity numbere, the maximum leading edge slope, .Typlcal calculated fin shapgs and I|ft.d|str|but|ons are shown in
and the angular location of the maximum leading edge slopie, F19S: 2 and 3, for the conditions of Fig. 1, name§:2.52, e

radians: =1.38,k=0.93, ande=1.34 radians.
A calculated(dimensional fin signature is shown as the line
S=wl/U (23) segments in Fig. 4. The symbdlsonnected with lingsare mea-
surements from Saminy]. It can be seen that the fin shapes and
e=a/(IU)=V(ED/(pA)/(IU) (24) positions are in generally good agreement with the measurements.
=h.-I/h 25y The characteristic lengths for these data lard.342 m andh,

K=MNxol/Mo (25) -0213 m

where Figures 5, 6, and 7 show the time variations of the correspond-

A=h/h- X=x/l d r= ing instantaneous locations of the leading edge @) and trailing
=h/hg, X=X/l and r=wt. edge k=1), their slopes and their vertical velocities, as calculated
Consequently, the nondimensional, instantaneous fin shaffem the solution of Eq(3). The symbols are measurements from
Re{H}, average power/P., average thrusf[/T,, and average Samimy[4]. It can be seen that the calculated theoretical results
Froude efficiencyzy , will be functions ofS, e, «, anda, where are in generally good agreement with the measurements.
P.=h2w2U(pA) andT,=P,/(2U). Itis noted that the elasticity The calculated variations of time-average power, thrust, and

number.e, represents the ratio of an “elastic” velocity/|, to the Froude efficiency with the swimming technique parametewnd
freestream velocityl . «a, are shown in Figs. 8, 9, and 10. The data points correspond to

0.4 -
. -
- 3 .
] 1 e 2 _ . . TE M
o H 0.2 = o
— | % T +
] I . . E
m V : . .
g £ o A .
— N .
a It LE L *
=] = .
£ o : T
b ‘s -0.2 — .
o -0.2}
‘: H] "
_—
g
. -
o -0.4 2 s
o 0.2 0.4 0.6 0.8 1 1.2 1.4
a 0.2 0.4 0.8 0.8 1 Time during one kick cycle, t [3)

Distance along fin, X=(2/l)

) S ) Fig. 5 Time variation of the position of the fin leading edge,
Fig. 3 Calculated lift distribution,  L(X,7)/L., as a function of h(0,t), (LE) and trailing edge, h(/,t), (TE) for the experimental
X during the kick cycle. Numbers denote increasing multiples conditions corresponding to Fig. 1. The symbols are measure-
of time, =, in @/4 increments, where L =hoU?(pA)/I?. ments from Samimy [4].
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Fig. 6 Time variation of the slope of the fin leading edge,
h,(0,t), (LE) and trailing edge, h,(/,t), (TE) for the experimen-
tal conditions corresponding to Fig. 1. The symbols are mea-
surements from Samimy [4].
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Fig. 7 Time variation of the vertical velocity of the fin leading
edge, h,(0,t), (LE) and trailing edge, h(/,t), (TE) for the experi-
mental conditions corresponding to Fig. 1. The symbols are
measurements from Samimy [4].

PIP., with
k, and leading
(phase) angle, a@. The data point corre-
sponds to the experimental conditions of Fig. 1.

Fig. 8 Variation of the non-dimensional power,
nondimensional maximum leading edge slope,
edge coordination

Journal of Applied Mechanics

Fig. 9 Variation of the nondimensional thrust, T/ T, with non-
dimensional maximum leading edge slope, k, and leading edge
coordination (phase) angle, . The data point corresponds to
the experimental conditions of Fig. 1.

the experimental conditions of Fig. 1. The behavior suggested by
Fig. 10 is striking. It suggests that the swimming technique, as
defined in terms of the phase lag,of the maximum leading edge
slope,k, can have a dramatic effect on the Froude efficiengy,
Indeed, the efficiency shows a precipitous drop@é negative
7e) asa— . Note that negativey: implies negative thrust.

4 Conclusions

An analytical solution was obtained for a fluid-solid interaction
problem of the moving-boundary type. By using an established
approximation for the fluid mechanics, and forcing the motion
with a periodic input at the edge of the solid, a closed-form solu-
tion was derived for the surface shape as a function of time. Fluid
forces, power, thrust, and Froude efficiency were also determined.
This solution extends previous work in which the surface shape

Fig. 10 Variation of the Froude efficiency,
sional maximum leading edge slope,

e, With nondimen-
k, and leading edge coor-
dination (phase) angle, «. The data point corresponds to the
experimental conditions of Fig. 1.
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behavior and/or waveform was prescribed. The presently report@dknowledgments

solution reveals a prediction of the local, instantaneous shape Otl'he authors gratefully acknowledge support for this research

an elastic surface in a ﬂ”_'d stream SU_bJeCted toa prescr!bed "Sm the United States Navy, NAVSEA, Navy Experimental Div-
tion at the edge of the solid. Itis given in terms of this motion, thgyg Unit, contract N6133199C0028.
freestream velocity and the elastic properties and cross section of
the surface. This first application of the theory to underwater fﬁeferences
swimming shows encouraging agreement with experimental data. .~ o ) ,

- - .[1] Lighthill, M. J., 1960, “Note on the Swimming of Slender Fish,” J. Fluid
New swim technique parameters arose naturally from the analysis™ ycch ‘g pp. 305-317.
that characterizes the heel slope and its phase with respect to th& Munk, M. M., 1923, “The Aerodynamic Forces on Airship Hulls,” NACA
heel motion. It is expected that the presently reported results wil| _ Report No. 184, pp. 453-468. , ,

. L . Lo L [3] Wu, T. Y.-T., 1960, “Swimming of a Waving Plate,” J. Fluid MecH.0, pp.

be useful in guiding both the design optimization of swim fins and ™™ 357 _344
the analysis of experimental measurements of underwater and/@#] Samimy, S., 2002, “Theoretical and Experimental Analysis of Underwater Fin
surface swimmers. The incorporation of other boundary condi- fsa‘;‘gm'[‘“\i(”gldlyflster's Project, State University of New York at Buffalo, Buf-
tions will permit the analysis of other surface/fluid interactive mo- 5} pendergast, D. R., 1996, “Energetics of Underwater Fin Swimming,” Med.

tions, such as problems in aeroelasticity involving flutter. Sci. Sports Exercisgp. 573-580.

350 / Vol. 70, MAY 2003 Transactions of the ASME



S. |. Bakhti .
=etes | Experimental Measurements of

R. A. Overfelt

Professor "e|00itv, POtentiaI, and
e Temperature Distributions in

wonsses | LiQUId Aluminum During
a.s.meir | Electromagnetic Stirring

Professor
P. G. Schmidt An experimental technique has been developed to measure both axial and transverse
* M velocities and temperature distribution in molten aluminum. Couette flow of liquid alumi-
Professor num, lead, tin, and low melting alloy in cylindrical container was chosen for calibration
, of the experimental technique and the magnetic probe. Velocity and temperature profiles
Department of Mathematics, for liquid aluminum rotating in cylindrical container at different angular velocities are
218 Parker Hall, obtained for two different values of the depth. We determined that the velocity values
Auburn University, increase with magnetic inductiofDOI: 10.1115/1.1558082
Auburn, AL 36849-5310
1 Introduction To obtain the semisolid Al-7wt%Si alloy, Lim et &3] used

Due to its many advantages centrifugal casting is widely usg&ectromagnetlc rotation with an induction motor and observed the

in pipe production. The centrifugal force influences the segregg-Ze and the dIS.tr.IbutIOI’l state of _the primary solid _partlcle, the
tion properties and structure of metals. Several modifications foree of sphem:lty, and the fraction of primary solid. _Obfse_r_va-
the centrifugal casting have been developed. One of the m gns of the_mm_ro_structures of the alloy, Wh'Ch was sem|solldlf|e_d
effective modifications to centrifugal casting is electromagnetf®y Magnetic stirring, showed that the size of the primary solid
stirring. In this method, a rotational magnetic field induces ed rtlple and |ts.standard dewanon increases Wl.th the specific solid
currents in molten metal. The Lorentelectromagneticforce re-  fraction. The size of the primary solid particle increased from 98
sults from the interaction between the magnetic field and ed%"' to 118 um as solid fraction increased from 0.2 to 0.5. The
currents. This force combined with the centrifugal force results fgree of sphericity increased with solid fraction. _
the internal motion of the liquid metal, which significantly recon- Griffiths and McCartney4,5] studied the flow control during
structs the cast structure. To develop mathematical models &®lidification using electromagnetic field and the resulting struc-
hydrodynamic computer codes to predict fluid velocity and teniure. Series of Al-Si alloys of different compositions and Al alloy
perature distributions in molten metals, it is substantive to creafd50 were solidified under conditions of controlled heat flow and
an experimental database for electromagnetic stirring process wlgctromagnetic stirring to examine how the CET was affected by
different metals and alloys. bulk liquid flows, of varying velocity. The results of the study
Spitzer et al[1] presented a mathematical model to predict thghow that the electromagnetic stirring of Al-Si alloys is associated
three-dimensional flow field in rotational electromagnetic stirringith the rapid removal of bulk liquid superheat and an enhance-
of round strands. The Navier-Stokes equations, the Maxwell equaent in the columnar-equiaxed transition. Increasing stirring cur-
tions and the continuity equation have been solved simultaneousiyit at a constant composition promoted the columnar-equiaxed
to compute the flow field in the liquid core of the strand. Théransition. Authors conclude that large equiaxed zones are associ-
one-dimensional computations were compared with experimengiéd with high velocity flows and originate from fragments of the
data obtained for mercury, and a satisfactory agreement has bdendritic solidification front. Electromagnetic stirring during so-
found. An experimental water model was used to validate thiglification of an Al alloy 7150 encouraged the formation of equi-
predicted secondary velocity components of the three-dimensioaakd grains and enhanced the columnar-equiaxed transition. The
flow. The results demonstrates that in electromagnetic stirring ektent of the equiaxed region increased with the intensity of stir-
steel strands, the secondary flow is very significant. ring. The grain refining effect was accompanied by increased mac-
The effects of external magnetic field and water cooling havesegregation due to displacement of the solute enriched interden-
been experimentally studied by Zhang et ). It has been dritic liquid by the electromagnetically driven bulk liquid.
shown that the macrostructure of cast Al-Si alloy can be refinedCurrey and Pickle$6] constructed a laboratory-scale electro-
by application of electromagnetic stirring or water cooling. Thenagnetic stirrer, which was tested on two Al-Si alloys. The results
better refinement was achieved by superimposing both of thegémonstrate that electromagnetic stirring reduced the amount of
effects. Due to fluid flow and rapid cooling, silicon solidified asjjicon segregation in the hypereutectic alloy, while in the hypoeu-
bulbous dendrites near the mould wall. tecticalloy stirring promoted dendrite fragmentation. Authors con-
- clude that electromagnetic stirring affects the solidification pro-
e o e o A e, 623 bY the string action and reduces the axial porosity.
CHANICS. Manuscript receivch){ by the ASME Applied Mechanics Division, Dec. 11, Cho et al[7] deV'sef_‘ and experimentally tested a special elec-
2001; final revision, Sept. 23, 2002. Associate Editor: D. A. Siginer. Discussion dflomagnetic stirrer which can produce local pulsating flows and
ment of Mschanical and Environmental Engineering, Universiy of Calfora-Sangn e oo 11 moten metals. They investigated the influence of
g]:rr;)ara, Santa Barbara, CA 93106-5070, a?nd will bge acceptectiyuntil four months aFeerquenCy’ current and .the Wa_vef_orm of current on the flow struc-
final publication of the paper itself in the ASMEDORNAL OF APPLIED MECHAN-  tUI€ and heat transfer in the liquid In-Ga-Sn metal pool. Authors
ICs. found that the double frequency mode resulted in more effective
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Fig. 1 Experimental apparatus used for local velocity and temperature mea-
surements in molten metals and alloys

heat transfer process compared to the single-frequency mddeity effects. Various probe constructions have been used in the
without incurring a decrease in the averaged flow velocity levekxperiments. It is shown that the probe signal is proportional to
As seen from the studies reviewed above, there exists a needdeerage velocity near the permanent-magnet velocity probe. The
techniques to measure simultaneously the temperature and lalbration coefficient as a function of probe construction, velocity
velocity components in molten metals and alloys. Laser Doppldistribution, and magnetic field has been determined experimen-
anemometry, interferometry, stroboscopic visualization, and oth@tly. No temperature dependence of the calibration factor has
most accurate conventional methods for velocity measuremebeen found in these experiments. The simplified probe equation is
are not applicable in molten metals due to their opacity. The seiormulated as
sors such as the Pitot-Prandtl tubg, are also ineffective due to ,
metal solidification within the manometric tubes. Hot wire sensors AV=KU—SAT, @)

can't be employed because of the high thermal conductivity gfhereu is the spatial average of a velocity compondaandSy,
liquid metals and their high temperature. Therefore, permaneffs factors of proportionality to be determined experimentally;
magnet potential probes have been developed for velocity mMeqy is an electrical potential dropy T is a temperature difference.
surement in these media. ) The objective of the present paper is to describe the technique
Ricou and Vives[9] developed an incorporated permanenty measure velocity, potential, and temperature distribution in
magnet potential probe of cylindrical shape for local velocity angholten metals during electromagnetic stirring and to present pre-
mass transfer measurement in molten metals. In the absence Ofirfh'ihary results for the liquid aluminum.
external magnetic field this probe allowed to measure the local
velocities within the range 0—10 m/s with a sensitivity of 1 mm/% E . tal A t dp d
The technique was applicable at temperatures as high as 720°C. Xperimental Apparatus and Frocedure
Gelfgat et al.[10] experimentally investigated a liquid metal A schematic diagram of the experimental apparatus to measure
flow induced by a rotating magnetic field in a cylindrical containelocal velocity and temperature in molten metals and alloys during
using a conductive probe with a local magnetic field. Authorslectromagnetic stirring is illustrated in Fig. 1. A computer-
obtained azimuthal velocity profiles under various field strengthsontrolled DC gear-motor has been used to provide a constant
A new flow regime with counterrotating fluid was observed wherotational speed to metal sample. The motor allows making mea-
magnetic field of high frequency was applied. The fluid core waairements at constant speeds from 0 to 250 RPM in 5 RPM in-
found to rotate with negative velocity. crements. A digital stroboscope/tachometer has been used to cali-
A rare-earth permanent magnet probe was used by Tokundmgate the angular speed of the motor with 0.1 RPM resolution.
et al.[11] to study structure of turbulence in a vertical He-Wood's The metal sample was placed inside a flat-bottomed cylindrical,
metal bubbling jet formed in a cylindrical vessel. Two pairs oéxtruded, high-purity alumina crucible. The crucible was attached
coupled electrodes were installed at 90 deg intervals aroundoathe drive shaft of a gear-motor through a specially designed
magnet. The probe enabled measurement of the radial and aklipling system to provide concentricity. The alumina crucible
velocity components simultaneously. However, the output vol25 mm inside diameter and 152 mm Ignfilled with alloy
ages of the probe were very low and had to be amplified in twsamples up to 100 mm high, have been exposed to magnetic field
stages to be processed with an A/D converter. and heating. During each set of experiments it was important to
WeissenfluH 12] developed a similar permanent-magnet probkeep the sample high constant. For each sample, the mass was
for local velocity, temperature, and turbulent heat flux measurdetermined according to the required sample volume and density.
ments in liquid metals. Theoretical expressions have been derivedis test samples we used pure 1e€@9.9999% purity, tin
to estimate probe sensitivity to the velocity, temperature, and el€®9.999% purity, aluminum (99.9% purity, and a low-melting
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Fig. 2 Diagram of sample-magnetic field-optical furnace ar-
rangement and heating energy focus action

The magnetic field was generated by two neodymium perma-
nent magnets. An MG-4D gaussmet&/alker Scientific Ing. op-

alloy LMA-158. The melting temperature of this alloy is 70°C.erating on the Hall-effect principle was used to measure the mag-
hardness is 12 Brinell, thermal expansion is 0.27%, density is 9.46tic field strength. It provided DC and AC field readings from
g/cnt, and shear viscosity is 2.05 mPa-s at the melting point. This0.1 gauss tar2 Tesla with 0.1% resolution. By changing the
alloy can be melted in hot water and can be recovered and testiéstance between the magnets we could obtain a magnetic field of
over again. desirable strength. It was significant to obtain a magnetic field

The motor-driven three-dimensional positioning system hagith uniformly distributed induction. Mapping performed by the
been designed and fabricated to provide a high accuracy positiddc-4D gaussmeter revealed that the magnetic induction varies in
ing to the crucible with the sample, heating elements, magnetmth vertical and horizontal directions. Contour lines for the mag-
and permanent-magnet potential probe. A gear motor with a marietic induction at different distances between the magnets are
mum speed of 500 rpm was used in the positioning system sbown in Fig. 3. As seen from this figure, the magnetic induction
provide low-speed variation®.1%). over the test sample varies10% in the vertical direction and

Quartz infrared line heating elements, housed in elliptical cast7% in the horizontal direction compared to its average value.
aluminum frames, were used as a furnace in the experiments. Higure 4 shows the variation of the magnetic induction with the
heated length of the chamber is 167 mm. The elliptical reflectodéstance between the magnets. Neither the coupling system nor
provide concentrated infrared energy to the test specimen. Highe alumina crucible had perceptible disturbing effects upon the
density infrared energy is produced by tubular, high-temperatuapplied magnetic field.
quartz lampgQ2000T4/CL with tungsten wire filament emitters.  The work principle of permanent magnet probes used in previ-
The lamps supply energi2 kW each in the infrared region and ous studies[9,12], was based on the Faraday’s law. An electric
are housed in an array of elliptical reflectdFsg. 2). Copper tube conductor moving through a magnetic field induces an electromo-
connections are provided for inlet and outlet flow of coolam- tive force normal to the magnetic field and the direction of mo-
ter) to cool lamp reflector bodies. Tap water at 15°C and 600 kRian. This electromotive force generates an electric field propor-
was supplied to cool the unit. tional to the magnetic field intensity and to the velocity of the
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Fig. 3 Contour lines for magnetic induction (in 10* T) measured at different
distances between magnets: (a) 12 cm; (b) 9 cm; (¢) 8 cm; (d) 7 cm

Journal of Applied Mechanics MAY 2003, Vol. 70 / 353



T,V

3

T,,V,

Chromel-Alumel
Electrodes

Alnico Permanent

:[:3/ Magnet
3

-
5
y

[
y

Fig. 5 Schematic diagram of constructed permanent magnet
probe (all dimensions are in millimeters )

electrodes situated at the opposite ends of the magietered
Alnico 8H (main constituents—aluminum, nickel, and copalas

used as a permanent magnet. This magnetic material has a 5.25
energy product and high-temperature stability, coercivity, and de-
magnetization resistance. Its fine grain structure results in high
uniform flux distribution and mechanical strength. It was suited to
our applications, which required short magnetic length and high-
speed motion. At temperatures as high as 700°C these magnets
retain half of their magnetization property. Specifications of the
permanent magnet are given in Table 1. The two electrodes of two
open-ended chromel-alumel thermocouples were used to measure
the electric potentials induced by the velocity of liquid metal. The
electrodes were housed inside a round, double bore, extruded Alu-
mina tubing.

The potential difference over the probe tip consists of contribu-
tions from the temperature difference between the two electrodes
and from several surface integrals around and within the probe.
Weissenfluh[12] suggests that the measured temperature differ-
ence between the two sensing points is damped by the inertia of
the thermocouples and high-frequency temperature oscillations
possibly do not affect the surface integrals. In our experiments,
calibrating the probes has eliminated the temperature effects. Cou-
ette flow of test samples in the liquid state has been chosen in

conductor. The disadvantage of this method is an influence of tb@libration experiments for the following reasons:

probe on the hydrodynamic flow structure during measurements.
However, miniaturization and proper design of the probe can re-—"
duce these influences and allow the precise measuring of botrb

components of velocity.

The permanent magnet probe shown in Fig. 5 basically made
up of a hollow cylindrical permanent magnet and two pairs of

Table 1 Magnetic and material characteristics of Sintered

Alnico 8H
Maximum energy produdBd Hd) 5.25
Residual inductionBr.-Gaus$ 7250
Coercive force(Hc-Oersteds 1975
Intrinsic coercive forcgHc-Oersteds 2125
Saturation magnetizing fordgic-Oersteds 6000
Recoil permeability 3.2
Density (g/cnt) 7.02
Curie temperaturé°C) 850
Hardness-Rockwell Rc44

Brookfield
Rheometer

Coupling

the velocity profile does not depend on viscosity of the test

sample;

the velocity is not a function of pressure drop which could

create additional difficulties for probe calibration;

. the shear rates and Reynolds numbers can be controlled eas-
ily;

4. calibration tests can be performed with a small amount of

test sample which is important to keep constant temperature

all over the liquid sample.

From the results and conclusions of the previous investigators,
[9,10,12, it becomes obvious that theoretically it is not possible
to predict the potential difference between the two sensing elec-
trodes of the probe as a function of the flow velocity. Therefore it
is necessary to evaluate the calibration factors experimentally. A
schematic diagram of the experimental apparatus for the perma-
nent magnet probe calibration is shown in Fig. 6. A computer-
controlled Brookfield rheometer Model DV-III was used to pro-

Data Acquisition
Board

PC

‘Alumina Red

T~

=] Thermocouple
| Alumina Crucible

Water Jacket

Gear motor

Optical Furnaces

]

Fig. 6 Experimental apparatus used for velocity probe calibration at Couette

flow

354 / Vol. 70, MAY 2003

Transactions of the ASME



7 -y 1o f | /ﬂ
—o— Al (0.25,0) 3
i o AI(0.25,0) ’
6 Ll @ A@©500 4 ’,»11‘ a Al (0.50,0) /
---a-- AL (0.75,0) ¥ 2 *[] 4 Al(0.75,0) [1/1
> _ | |---Pb(0500) ¥ o § 0.50
= : 2 ] * Pb(0.50,0)
8 : fxg%o()) i 48 g s " Sn0.50.0) ~
5 4 (0500)] - E'I s 4 LMA-158 (0.50,0)
E . ..’ d -
S, S % £
g ST £
2 g y
£ e )
- 2
&’g — ol
1 " " 1
4
; 0
e R . 0 1 2 3 4 5 6 7
0 5 10 15 20 25 30 Potentia! Difference, mV

Angular Velocity, ™' . o o .
Fig. 8 Calibration of magnet probe for liquid aluminum, lead,

Fig. 7 Response of the probe as a function of angular velocity tin, and low melting alloy LMA-158

for liquid aluminum, lead, tin, and low melting alloy LMA-158
(tip of the probe is located in  &=y/(R,—R;) and {=2z/L)

Uy
SRR @)
vide a golnstant_ rotatlonatll sﬁi%d;o |nnde_r cylltnderl fro_m 0 tg 23fhere the origin of coordinate(in the radial directiopwas taken
rPm in ©.1 rpm increments. -/-Mm diameter alumina ro W§ the stationary outer cylinder. Analytical predictions using Eq.

a_ttached to t_he spindle of the rheometer thrc_)qgh a specially' ﬁ) are shown in Fig. 9 together with experimental data for liquid
signed coupling system to provide concentricity to the rotatin

. . X uminum. As we can see, a normalized azimuthal velocity varia-
rod. The probe was calibrated while the crucible rotated at Cofl5 across the gap is linear for the aluminum sample and there is
stant _speed. Usmg the_trayerse device, th? probe .COUId be mo d agreement between the experimental results and predictions.
in radial and vertical directions. The alumina crucible of 54-m
inside diameter and 305 mm long with the test sample of certain
amount has beer_1 exposed to heating. A_quad elliptical heatigg Results and Discussion
chamber housed in an octagonal cast aluminum frame was used in
calibration tests. During calibration tests, it was essential to main-The effect of the induced magnetic field is characterized by the
tain the sample height constant. For each metal sample the m@aggnetic Reynolds number defined as
was determined according to the required sample volume and den- Re.= 0o uR2 (5)
sity. To eliminate the temperature effects, the potential difference En eHoR1
measured at the stationary liquid sample was subtracted from thieere 1 is a magnetic permeabilityy is an angular velocity of
potential differences obtained during the Couette flow. Figureflid rotation, o, is electrical conductivity, an&, is the radius of
shows the potential difference as a function of angular velocity fthe sample. It represents the ratio of the induced field to the field
liquid aluminum at different positions of the magnetic probe. Thef the magnetic probe. Figure 10 shows the variation of the mag-
relationship between the potential difference due to the motioretic Reynolds number with the angular velocity for the test
relative to the probe tip and the azimuthal component of the veamples. As seen from the figure, JR€l, which means that
locity in an annular space between the rotational rod and station-
ary crucible for liquid aluminunt99.9% purity, lead, tin, and low
melting alloy is shown in Fig. 8. According to the regression
analysis, these experimental data can best be described by
linear relationship

Ap=av, @) 08

whereAg is a potential differencey is a local flow velocity; and

a is a constant coefficient. With the Pearson product moment cc 0.8

relation coefficientR=0.99 the value of this coefficient for the o

given probe isa=0.692 mV s/cm. =
The calibration results also have been verified by comparit 0.4 —Eqn. (4) |

these data with the velocity predictions for Couette flow. The vt o A

locity distribution for Couette flow is given by ¢ Pb
) ) 0.2 m Sn —
__ Yy | (R—Ry*(op ( y V[ oy s LMA158
""R-R, 2. \ox)[|R,—R;) \Ry—Ry/[’ .
3
®) 0 0.2 04 06 08 1
whereR; andR, are the radii of the inside and outside cylinders v/ (Re-Ry)

respectivelyU is a velocity at the surface of the rotational cylin-
der; andu is viscosity of the liquid. For zero pressure gradientig. 9 Normalized velocity profile in the annular space be-
(dp/9x=0), the velocity varies linearly witly as tween the cylinders
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Fig. 10 Varlgtlon of the r_'nagnetlc Reynolds number with the for pure liquid lead, tin, and aluminum samples (L=10cm)
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[
1. laminar flow regime has been observed in our experiments, pw
2. the inﬂuence Of the induced magnetic f|e|d can be neglected,':igure 12 shows the variation of the Ekman number with the
and ) s ) angular velocity of fluid rotation. As seen from this figuEes< 1
3. the induction of an electric field by fluctuations of the magover the angular velocity range used in our experiments. Hence,
netic field can be disregarded in comparison with the elegrcording to Gelfgat et aJ10], the velocity in the fluid core does
tromagnetlc force. not depend oIz
Figure 13 represents the positions of the magnetic probe inside

He molten metal. Seven points in radial and two points in vertical
rections were chosen inside the liquid metal sample to measure

The flow regime of the melt flow in a rotating cylindrical con-
tainer is determined by the hydraulic Reynolds number, whid

represents the ratio of inertia forces to viscous forces, and is de- .
azimuthal velocity.

fined by the formula The measured potential differences at two different values of
oR%p the depth of the melt are shown in Fig. 14. As seen from this

&= Ta (6) figure, at the same radial positions the potential differences are

higher at 2/L=0.25 than the potential differences measured at

whereu andp are shear viscosity and density of the liquid metathe mid-height of the melt.

respectively, ando is an angular velocity of fluid rotation. The  ysing the calibration results described above and the measured
variation of the Reynolds number with angular velocity for leadsajues of the potential differences we can determine the velocity
tin, and aluminum is shown in Fig. 11. As seen from this figure,

the flow regime in containers for all samples are turbulent, except

for molten aluminum at low velocitiegw<13 s 4. A
Another interesting criterion is the Ekman number, which de z
fines the order of the vertical velocity component in rotatione 0]
flows. The Ekman number is the ratio of viscous forces to coriol /
forces: R
Y=r/R Y= 2z/L _/
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Fig. 11 Variation of hydraulic Reynolds number with the angu- Fig. 13 Positions of magnetic probe inside the liquid metal
lar velocity for pure liquid lead, tin, and aluminum samples sample
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Fig. 16 Measured normalized velocity profiles for liquid alumi-
num rotating in cylindrical container at different inductions of
magnetic field (w=18.23 s7%)

Fig. 14 Measured potential differences for liquid aluminum ro-
tating in cylindrical container at different angular velocities
(B=0)

profiles in liquid metal. It is possible to eliminate the dependendBe container wall. Further modifications in the magnetic probe
of velocity profile on angular velocity of the rotation by normal-2re needed to measure the velocity profile and velocity fluctua-
izing the local velocity ¢) relative to the velocity at the wally).  tions in a boundary layer near the wall. _ o
Measured and normalized velocity profiles for liquid aluminum Variation of measured normalized velocity profiles for liquid
rotating in cylindrical container at different angular velocities ar@luminum rotating in cylindrical container with magnetic field in-
presented in Fig. 15. The velocity profiles obtained for two diffeiduction (at rotating spee@=18.23 s ) is presented in Fig. 16.
ent values of the depth of the liquid show that the velocity in th&s seen from the figure, the velocity values increase with mag-
rotating core {/R<0.1) does not vary significantly with depth. Netic induction. _Flgu_re 17 represents th_e variation of normahzz_ad
However, away from the core fR>0.1) the azimuthal velocity @zimuthal velocity with magnetic induction. These results are in
at 2z/L=0.25 is higher compared to the azimuthal velocity a§00d qualitative agreement with numerical simulations and ex-
mid-height of the melt. This phenomenon is related to the “cerRerimental data reported by previous researchdra0]. Gelfgat
trifuging” effect. The fluid which rotate with the boundary layer iset al.[10] observed the counterrotation of liquid metal caused by
thrown outwards by centrifugal forces and is replaced by fluiydrodynamic instabilities near the extreme points of the velocity
flowing towards the boundary layer in the axial direction. Therofiles. As shown in Figs. 15-17, in our experiments we could
predictions of the normalized velocity profiles for liquid alumi-NOt observe any counter rotation. We would assume Bhatom-
num determined using an approximate theoretical model for sofg@nent is negligibly small at positions where velocity was mea-
body are also shown in Fig. 15. As seen from this figure, there sred. ] )

some difference between the theoretical predictions and experifollowing the procedure used by Weissenflt] we measured
mental data. This can be explained with both the errors in th@e temperature profile in an aluminum melt. To exclude the de-
measurements and the assumptions made in the theory. UnfoR@ndence of temperature profile on wall heat flux, we normalized

nately, the probe size did not allow to make measurements né3¢ local temperature differenckT relative to the temperature
difference between the container wall and centét, . Here
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Fig. 15 Measured and theoretical (for solid body ) normalized
velocity profiles for liquid aluminum rotating in cylindrical con-
tainer at different angular velocities (B=0)

Journal of Applied Mechanics

Fig. 17 Variation of azimuthal velocity with magnetic induc-
tion for liquid aluminum rotating in cylindrical container at dif-
ferent distances from axis of rotation (w=18.23 s7%)
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Fig. 18 Normalized temperature profiles in rotating melt of
aluminum (w=18.23 s™%, B=0, z=0)

AT=T-T, and AT,=T,—T,, (8)

T=local temperature, T,=temperature in the center,
T,=temperature on the container wall.

The normalized temperature profile in molten aluminum at an-
gular velocityw=18.23 s is presented in Fig. 18. Using a re-

the velocity in the rotating corer (R<0.1) does not vary signifi-
cantly with depth. However, away from the cord R>0.1) the
azimuthal velocity at depthZL =0.25 is higher compared to the
azimuthal velocity at mid-height of the melt.

From normalized velocity profiles for liquid aluminum rotating
in a cylindrical container at different inductions of magnetic field
(at rotating speed=18.23 %) we determined that the velocity
values increase with magnetic induction.

For the molten aluminum sample we measured the temperature
profile, which was normalized to eliminate the dependence of the
temperature profile on the wall heat flux. The developed technique
will allow optimizing the process parameters of electromagnetic
stirring.
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Viscoelastic Functionally Graded Materials,” ASME J. Appl. Med8, pp. 129-132],

have recently shown that the viscoelastic correspondence principle remains valid for a
linearly isotropic viscoelastic functionally graded material with separable relaxation (or
creep) functions in space and time. This paper revisits this issue by addressing some
subtle points regarding this result and examines the reasons behind the success or failure
of the correspondence principle for viscoelastic functionally graded materials. For the
inseparable class of honhomogeneous materials, the correspondence principle fails be-
cause of an inconsistency between the replacements of the moduli and of their derivatives.
A simple but informative one-dimensional example, involving an exponentially graded
material, is used to further clarify these reasofBOIl: 10.1115/1.1533805
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1 Introduction are admissible, but otherwise arbitrary functions of time. For con-
g?nience of presentation, let this class of viscoelastic materials be

Th_e present study is motivated by a recent investigation called the “separable class.” Thus the rest of the materials consti-
Paulino and Jir1] on the correspondence principle in function-

d ) -_tute the so called “inseparable class.” Paulino and Jin have ap-
ally graded_ mate_rlal(sFGMs), as d_l_scussed below. Such _materlal lied the correspondence principle to this “separable class” of
are those in which the composition and volume fraction of t

. = . - EGMs to study crack problems under antiplane shiga6], and
constituents vary gradually, giving a nonunlform mlcrOStrUCtur|‘?1-plane loading[7]. Other authors studying crack problems in
\(/:Vrllt:nizgmjr:ggﬂasrgs %ﬁg&% Ealigﬂ:pﬁészsbe\g?c;?j ditggrrpoorrlﬁbnhomogeneous viscoelastic materials have directly solved the

o . X overning viscoelastic equations without using the correspon-
ample, constitutive modeling?2], thermal stresse$3], fracture j(o g q g P

! ; - . dence principle. For example, Schovanec et al. have considered
behavior,[4], viscoelastic fracture,5—7], time-dependent stress _,_.: ot :
analysis, [8]. strain gradient effects[9], plate bending,[10], stationary cracks|15], quasi-static crack propagatiofi6], and

dynamic crack propagatiofil 7], in nonhomogeneous viscoelastic

higher order theon{11], and so on. Comprehen§|ve FEVIEWS Oftyedia under antiplane shear conditions. Schovanec and Walton
several aspects of FGMs may be found in the article by Hil2), 1,50 4150 considered quasi-static propagation of a plane-strain
the chapter by Paulino et dl13], and the book by Suresh andy,,ge | crack in a power-law inhomogeneous linearly viscoelastic
Mortenser{14]. . L ) .. body,[18], and calculated the corresponding energy release rate,
One of the primary application areas of FGMs is highryg)" ajthough a “separable class” of viscoelastic materials were
temperature technology. For example, in a ceramic/metal FGIY, gied in Refs[15] to [19], no use of the correspondence prin-
the ceramic offers thermal barrier effects and protects the mefal o \was made in their wé)rk. As a result, the mathematical cal-
from corrosion and oxidation while the FGM is toughened andjations in these papers become quite complicated and involved.
strengthened by the metallic composition. Materials will exhibit }; ;o important to mention some older work related to the sub-
creep qn_d stress relaxation behav_ior at high temperatures. Yé?:t of this paper. Hilton and Clementg20] and Hashiri21] have
coelasticity offers a reasonable basis for the study of phenomeigysigered viscoelastic problems with piecewise constant proper-
logical behavior of creep and stress relaxation. The correspqpss. Their problems are not directly relevant to the case of con-
dence principle is probably the most useful tool in wscoelastlcnt)ynuous|y varying elastic moduli under consideration in the
because the Laplace transform of the viscoelastic solution canﬁ@sem work. Schapef22] has, in fact, considered the continu-
directly obtained from the existing elastic solution. The viscoela§U5|y varying case in which thspatially variablg elastic moduli
tic correspondence principle, unfortunately, does not hold, in gegrso depend on the Laplace transform paramstdihe present
eral, for FGMs. Paulino and J[i1], however, have proved that the\york is concerned only with thesual class of nonhomogeneous
correspondence principle of viscoelasticity and thermoviscoelagastic materialsin which the moduli are functions only of the
ticity is valid for a class of FGMs where the relaxation functiongpatia| coordinateg, not of time or of the Laplace parameter.
@n shear and dilatationy(x,t) andK(x,t), have separat_)Ie forr_ns, The present paper supplements that by Paulino andLJlift is
e, u(x)=wu(x)g(t) and K(x,t)=K(x)f(t), respectively, in first shown that the success or failure of the correspondence prin-
whichx denotes Cartesian coordinatess time, andf(t) andg(t)  ciple for linear nonhomogeneous viscoelastic materials rests upon
—_ the forms of the spatial derivatives of the relaxation functions,
To whom correspondence should be addressed. since these quantities appear in the equilibrium equations. This
Contributed by the Applied Mephamc; Division oHE AMERICAN SOCIETY OF di . is foll d b . | but inf ti }
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CHANICS. Manuscript received by the Applied Mechanics Division, Nov. 6, 2001flimensional example for which closed-form solutions are ob-
final revision, June 7, 2002. Associate Editor: M.-J. Pindera. Discussion on the paggined for a Maxwell material under tensile loading wid a
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departmentééparame antb) an inseparable relaxation function. Two kinds of

Mechanics and Environmental Engineering, University of California—Santa Barbalii, i, . . .
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2 The Viscoelastic Correspondence Principle for Func- ANX)=SN(X,S), w(X)=Su(X,s) @)
tionally Graded Materials

Some of the governing equations for nonhomogeneous isotro-
pic linearly elastic and viscoelastic materials, under quasi-staticA sufficient condition for the validity of the correspondence
deformation, in the physical and Laplace transformed domairgjnciple is fulfilled by the “separable class” of linear viscoelastic
are outlined below. The standard equations for homogeneous viaterials where
coelastic materials are available in many references, e.g., Chris-

Ni()=8N(6S),  mi(X)=Smi(X,S). ®)

tenser[23]. A H)=N)h(t), u(xt)=u(x)g(t). (9)
N
2.1 Elasticity. The well-known constitutive equation for ow _ _ . .
linear elastic behavior is NX,8)=A(X)h(s), u(x,8)=u(X)g(s) (20)
a'ij(x,t)=)\(x)skk(x,t)5ij+2,u(X)sij(X,t) (1) SO that
Wherea_ij andegj; are components of the stress and strain tensors, Xi(X,S)Z)\,i(X)ﬁ(S), ,LT,i(X,S)=,u,i(X)§(S)- (11)
respectively,\ and u are Lameparameters andj; are compo- o ) .
nents of the Kronecker delta. It is useful to note thatK Therefore, for this “separable class” of materials, E6) be-

—(2/3)u whereK and . are the bulk and shear moduli, respectOmMes
tively, of the material.

Taking Laplace transformévhen they exist defined asf_(s) _ T
= [5f(t)exp *tdt, (1) becomes + A i(X)N(s)e(X,9) + 251 ;(X)g(S)&ij(x,9).  (12)

711 (%,8) =N (X)e(X,8) & + 2(X) £15(X,9). ) With the replacement&’) and(10) for the relaxation functions,

and(8) and(11) for their derivatives, Eq93) and(12) are com-

Applying the equilibrium equatior(in the absence of body patiple; therefore, the correspondence principle is valid for this
forces in the Laplace transform domain {@), one obtains “separable class” of viscoelastic materials.

0=SN(X)N(8) By i(X,5) + 25(X)G(S) e} (X,S)

0= (X,8) = M(X) ekki(%,5) + 2 (X) ij j(X,5) + N i(X) e X,S) 2.5 Failure of the Correspondence Principle for the “In-

+2u(X)ej(X,9) (3) separable Class™. Itis now observed that the replaceme(its
which work for homogeneous problems, do not, in general, work
where () ;=3(-)/dx; . in the inseparable case. The reason for this is that the replace-

2.2 Viscoelasticity. This time, the integral form of the con- ments(8) are, in general, inconsEtent, in the sense that the spatial
stitutive equation, with relaxation functiongx,t) andw(x,t), is dependence ok ;(x,s) and (or) u ;(x,s) can be quite different
from those(thad of A ;(x) and(or) u ;(X), respectively. This issue
is rather subtle and the failure of the correspondence principle for
the inseparable case is demonstrated by means of a simple ex-
ample in Section 3 of this paper.

t ﬁekk
aij(x,t)= O}\(X,t— 7) ?(x,r) 5;dr

t (?Sij
+2foﬂ(x't_7)ﬁ(x’7)d7 (4) 3 An lllustrative One-dimensional Example

This section presents a simple one-dimensional exartgade

and its Laplace transform is Fig. 1), considering exponentially graded properties, to illustrate

Fij(x,s):s:(x,s)?kk(x,s) 8ij+2su(x,5)ei(X,9). (5) the various issues regarding the validity or not of the correspon-
) o ) ) dence principle for viscoelastic functionally graded materials
Applying the equilibrium equation t¢) results in (FGMs). Materials with exponential gradation have been widely

used in the technical literature—see, for example, Réf3,14].
In the present example, closed-form solutions are obtained for a
+ SN (X,S) e X,5) + 2s(x,8)&j(X,S). (6) Nnonhomogeneous Maxwell material under tensile loading ¢aith
' ' a separable antb) an inseparable relaxation function. Two types

2.3 Range of Validity of the Correspondence Principle of boundary conditions, displacement prescribed and mixed, are
Consider a nonhomogeneous isotropic linear elastic material witonsidered here.
shear and bulk moduli(x) and K(x), respectively. Now consider . L . .
a boundary value problem for a body B with a fixed bound#y 3.1 Relaxation Func_tlon in Ten5|_on. Consider a nonhomo-
composed of this material. LeB, and dB, (#B=JB,UdB,) be 9eneous Maxwell material with tensile parametg(x) and 7(x)
parts of the boundary on which the displacements and tractiors ShOWn in Fig. (). The relaxation function of this material in
respectively, are prescribed. It is also assumed &y and 9B, €nsion, together with its Laplace transform, 4@,

0=} j(X,5) =S(X, ) e 4ei(X,8) + 25(x, ) &5 (%,5)

do not vary in time. The applied boundary displacements and/or — _

. ; ! ; E(Ot E(x)
tractions are allowed to be (slowly varying) functions of time E(x,t)=E(x)ex ol E(x,s)= m
therefore, the fields in B—displacement, strain and stress, can also 7(X) s+EX)/n( (13

be functions of time. Inertia and body forces are neglected here. In

this situation, the usual (quasi-static) viscoelastic correspondenceTwo cases are considered next:
principle remains valid in general in the separable case, i.e., (a) separableE(x)=Eqye™**, n(x)= noe” **.

when the (viscoelastic) relaxation functions in shear and in dila- (b) inseparableE(x) =Eqe™ %, 5(X)= 7,.

tation have the formgu(x,t) = u(x)g(t), K(x,t)=K(x)f(t), re- In the aboveE,, 7y, anda are material constants. Notice that
spectively, where f(t) and g(t) are sufficiently well behaved buthas unitg length ~* and thus 14 expresses the length scale of

otherwise arbitrary functions of time. For the inseparable caseahomogeneity. Such an additional length scale characterizes an
the viscoelastic correspondence principle is not valid in generaEGM and influences its material behavior.

o 2 R f Validity of Principl
2.4 Success of Correspondence Principle for the “Sepa- 3 ange of Validity of Correspondence Principle

rable Class”. The crucial step is a comparison of Eg8) and Separable Class. For case(a), which belongs to the “sepa-
(6) and the replacements: rable class,” one has
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__%%L x=0,u=0

X,Uu
L
o I\/\I I_l L. X:L
|_| u=vt or
E (x) N G=0,t

Fig. 1 One-dimensional example; (a) nonhomogeneous Maxwell material;  (b) bar un-
der tensile loading

SE(x) Case (a) “Separable Class"—Viscoelastic SolutiorThe vis-
STE T (14)  coelastic solution for this case is obtained easily by applying the
0’70 correspondence principle. Carrying out the replacement
sE'(x)

el S SE(x) sEe” ¥
s+Eg/no’

E(X): EoeiaX:SE(X,S): s+ E0/770 - s+ E0/7]0 '

E(x):sE(x,s)z

(15)

9 —
E (x):sﬂ E(x,s)=

In this case, the replacements #©(x) andE’(x) are consistent

(see Egs(3) and(12)) and the correspondence principle remaincs)ne gets
valid. _ aEqug
o(x,s)= T ,
Inseparable class. Now s[s+Eq/mol[e*—1] 21)
— sE(x) sEe™ @70V 0o
= = X,t) = —r—=[1—exp(— Ept/ .
E()=SE(X,8)= 7 B0l 70~ ST (Eolme ™ (16) a(x,t) [e Lfl][ p(—Eot/70)]
A consistent replacement f@&' (x) should be As expected from the correspondence principle, the solutions for
, o e(x,t) and u(x,t) can be easily shown to be the same as the
sE'(x) —askge elastic solutions (2@)and (20) .

J —
; = —=#Ss—E(x,8). (17)
STE'()/mo s~ a(Bolmo)e x Case (b) “Inseparable Class™—Viscoelastic Solutiorit is

This time, the replacements f&(x) andE’(x) are not consis- easy to show that, in this case, an attempt to apply the correspon-
tent. As a result, the correspondence principle fails in the insegdence principle fails. One gets a stress solution that is a function
rable case. of x, and, therefore, does not satisfy equilibrium.

The boundary value problem to be solved is defined by the
3.3 Tensile Loading on a Maxwell Bar With Displacement equations(see Fig. 1a))

Boundary Conditions. A bar, made of Maxwell material, is

loaded in tension as shown in Figll The lateral surface of the do . _ _du
bar is traction free—so that theg{)rziy nonzero stress g x,t) W(X’t)_o’ s(xt)= 5()('0 (22)
=g(x,t). The boundary and initial conditions on the axial dis- £ 5
placemenu(x,t) are a—o(x,t)+ (—X)O'(X,t)=E(X)—8(X,t) 23)
U0 =0, u(L,t)=vet; u(x,00=e(x,00=0(x,0=0 N 7(X) N
(18) together withE(x)=Ege™**, n(x)=17, and the boundary and
whereu,, is a constant. initial conditions(18).

Taking the Laplace transform @23), one gets
Elastic Solution. Using the usual equatiorieeres(x,t) is the —

. . _ = s — _
axial strai a(x,5)= % =SE(x,9)8(X,S). (24)
Ju(x,t)
e(x,t)= x The stress must satisfy equilibrium (32)i.e., it must be inde-

(19) pendent oix. Therefore, one can write
o Ju(x,t) do(Xx,t) o _ _ —

o(X,t)=E(x)e(x,t)=Eqe e X a(Xx,8)=sC(s), &(x,5)=C(s)/E(X,s) (25)
together with the boundary and initial conditiof3), one gets }/i\?:;e the functiorC(s) must be obtained from boundary condi-
the solution Integrating (25) with respect tox, and using the boundary

e”—1 avgte™ aEquot conditions in(18), one has
RO Pt e _ f CO) 1 % oot g
u(L,s)= X=—, S)=———
. . - (20) _ 0 E(x,9) s? S2I(s)
Note that since the stress must satisfy the equilibrium equation
dalax(x,t) =0, it must be independent of wherel(s), with E(x)=Eqe~**, n(X)= 7o, is
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) JL dx s L 4 Concluding Remarks
S =

— al
0 E(x,s) an(e D+ o @7) In a recent paper in this journal, Paulino and Jiq have
proved that the viscoelastic correspondence principle is valid for a
From (25), (26),, and(27), one obtains the Laplace trans—class of functionally graded materiglEGMs) with separable re-
form of the stress, and then the stress as a functioneofdt. The |axation functions. The present paper revisits this issue and exam-

result is ines the reasons behind the success or failure of the correspon-
dence principle for viscoelastic FGMs. While material
F(x.8)= Yo Co(xit)= M[l_e—bt] nonlinearities, moving boundaries, or moving lo4fts examplé
ol L are well-known reasons for the failure of the viscoelastic corre-
S a_Eo(e -+ % spondence principle, to the best of the authors’ knowledge, the

(28) reasons for the failure of the principle due to continuously spa-
tially varying material(elastic and viscoelasfigroperties have
whereb=aLEq/[ 7o(e**—1)]. With o(x,t) determinedg(x,t)  not been discussed before in the literature. Schajyhas con-
is obtained directly from the viscoelastic constitutive E23). sidered this class of problems, but not for the usual situation in
Integrating the resulting expression f@#/Jt(x,t) with respect to which the elastic material properties depend only on spatial coor-
t, and using the quiescent initial conditieix,0)=0, one gets the dinates. Also, it is not clear to the authors of the present paper
solution for the strain distribution in the bar. This is whether anyone has noticed before that for the inseparable class of

ol q i nonhomogeneous materials, the viscoelastic correspondence prin-
M}[l—eb‘ﬁ fot (29) ciple fails because of an inconsistency between the replacements

al L of the moduli and of their derivativesee Eqs(16)—(17)).

As stated before, the correspondence principle always works
If‘or the “separable class” of materials, and does not, in general, for
the “inseparable class” of viscoelastic materials. Examples of ap-
plications of the correspondence principle to FGM problems in
the separable class are available in RE3s:7].

ToVo
LEg

aX __

e(x,t)=

Note that, in this example, with the elastic strain distributio
e(x,t) in (20), independent oE, £(x,s) from Eq.(24) is notthe
Laplace transform of the elastic solutieiix,t). In other words,
contrary to the dictates of the correspondence princig(g,t) in
Eq. (29 is different from the elastic strain solution in EQO),.

Finally, integrating(29) with respect ta, and using the bound-
ary conditions from(18), leads to the solution for the displace-AcCknowledgments
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a.s.rais' | Bending of Cord Composite
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wioi I | aminate Cylindrical Shells

G. A. Costello

Professor Emeritus, A theory for the bending of cord composite laminate cylindrical shells is developed. The
Fellow ASME extension-twist coupling of the cords is taken into account. The general case of a circular
cylindrical shell with cord plies at various angles to the shell axis is considered. The
Theoretical and Applied Mechanics, differential equations for the displacements are derived. These equations are solved ana-
University of lllinois at Urbana-Champaign, lytically in closed form for a shell subjected to axisymmetric loading and no in-plane
Urbana, IL 61801 tractions. The results of the current study are compared with the commonly used Gough-

Tangorra and Akasaka-Hirano solutiongDOl: 10.1115/1.1544541

Introduction Formulation

A theory for the bending of cord composite laminate cylindrical The differential equations for the displacements of a cord com-
shells is developed. A cord composite consists of cords embeddsite laminate cylindrical shell are developed. Figure 1 shows a
in a matrix. Reviews of the cord composites literature are given Igprd composite cylindrical shell with a cord ply off the middle
Walter [1] and Walter and Patdl]. Typically, the approach to surface at an angle to the shell axis. Figure 2 shows a typical
determine the load-deformation relations for cord composites Helgment for the shell. The radius of the middle surface;ishe
been similar to the approach used for conventional compositéickness ish; the cord spacing is; the distance the cord ply is
[3], and the extension-twist coupling of the cords was ignore@ff the middle surface ig.; the cord-ply angle ig; the cylindri-
More recently, this coupling has been taken into account in tf¢&l coordinates are, ¢, andz, and the element dimensions in the
anaysis of cord composite materials and structures by Paris, Lirdnd ¢ directions areAx andaA ¢, respectively.

and Costelld 4], Kittredge[5], Shield and Costell§6—8], Paris  Equilibrium Equations. Figure 3 shows a typical element
[9], and Paris and Costel[d0]. for the shell with(a) the tractions and the force resultants dbd

The objective of the current study is to assess the effects 9 moment resultants. The tractions arg p,. andp,; the
changes in the geometry and/or constituents of a cord composiiece resultants aré\, , Ny, Ngx, N, Qy, andQ,,; and the
laminate cylindrical shell on the load-deformation response.  moment resultants adl,, My, , M, andM, . It is assumed

The matrix is assumed to be homogeneous, linear-elastic, ahdt the force and moment resultants may be represented by a
isotropic. The stress-strain relations and the strain-displacem@aylor series. The equilibrium equations for the element may be
relations in cylindrical coordinates can be found in the book bgxpressed as

Love [11].
Costello[12] showed that the cord axial force and twisting aNXJr 10N +p,=0 1)
moment are linearly proportional to the axial strain and twist of 28 ade o
the cord and that the cord bending moment is linearly proportional N 15N Q
to the curvature of the cord. Although the axial response of the e R A . L )
cords is different in tension than in compression, the bimodular IxX ade ¢ a
characteristics of the cords will be neglected. The transverse load- 9Q, 14Q N
carrying capacity of the cords is neglected. X+ £ +p,+—2=0, (3)
The Kirchhoff-Love hypothesig13], is employed. That is, it is ox  ade a
assumed that lines straight and normal to the middle surface be- M 16M
fore deformation remain straight and normal to the middle surface — Q,=0, (4)
after deformation, that the change in the length of any line normal X ade
to the middle surface is negligible, that the shell is thin, and that IM 19M
the strains, displacements, and rotations are small. It is assumed =+ ZQ,=0, (5)
that the cords are perfectly bonded to the matrix and that the X ade
volume of the matrix displaced by the cords can be neglected.and
The resulting equations for the displacements are solved for
axisymmetric loading. The response due to uniformly distributed N. —N .+ %:0 (6)
axisymmetric end loads and uniform internal pressure is found for XU a '

a semi-infinite cylinder and a finite cylinder. Other solutions ar olving Eas.(4) and (5) for and ields
given by Parig9]. The results of the current study are compare% ving Egs.(4) © Qx Qe ¥
with the commonly used Gough-Tangorra and Akasaka-Hirano My 1M My, 1M,

solutions[2]. “x t ade and Q.= x ade @

Tpresently, Visiting Assistant Professor, Mechanical Engineering, Boise State umHbstituting Eqs(7) into Egs.(2) and(3) yields
versity, Boise, ID 83725, and to whom correspondence should be addressed.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ‘9Nx<p 1‘9sz 1oM X@ 1oM 1) _
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- IX + ade B a0x - azz?go + P,= 0 8)
CHANICS. Manuscript received by the Applied Mechanics Division, Apr. 15, 1999;
final revision, Aug. 7, 2002. Associate Editor: J. W. Ju. Discussion on the papghd
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Department of

Mechanics and Environmental Engineering, University of California—Santa Barbara, 192|\/| 1(?2|\/| 1(92M 1192|V| N
Santa Barbara, CA 93106-5070, and will be accepted until four months after final 2X Xe X 4 > g’ 424 p,=0. (9)
publication in the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. X aoxde adxde a“do a
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Fig. 1 A cord composite cylindrical shell

Equations(1), (6), (8), and(9) are the equations for the force and dup 1/ dva 1duan  dvp
moment resultants. There are four equations and eight unknownsx=——, &,==| > _—Wa/, and yy,=——+——,

; . : : X r\de rde X
and the problem is statically indeterminate. (11)

Kinematics. Consider a circular cylindrical shell that under-
goes a deformation. The displacements of some phiint the X,
¢, andz directions areu,, va, andw,, respectively; and the
displacements of the middle surface of the shell inxhe, andz
directions areu, v, andw, respectively. The Kirchhoff-Love hy-
pothesis yields

a and wa=w, Ny

ow la—z ZoW
onm| 5o

Nox

(10) ®

Up=u—2z——, —,
A X ade

whereu=u(x,¢), v=v(X,¢), andw=w(X, ).

Strain-Displacement Relations. The strains are,, ¢, and N,
¥xe» and the strain-displacement relations may be expressed &

-4
&~

Fig. 3 Atypical element for the shell with (&) the tractions and
Fig. 2 A typical element for the shell the force resultants and  (b) the moment resultants
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h/2

oy(a—2)Aedz, N“’m:HJ o,Axdz,

wherer =a—z. The strains of the middle surface arg, sg , and 1 jhl?
—hi2

ygq,, and the curvatures of the middle surface age «,, and Nym= alg

Ky, - Equations(10) and(11) yield h

o 1 Jh/Z h/2
€ € K Nyym=—— Two(@—2)Aedz, N =—J T ,AXxdz
8>< = eé -z KX (12) T ake S oA e
@ 2 e (> a7)
Yxe 7§¢ 2Ky " 1 fhlz Aozd " 1 fhlz Axrd
=—— oya—2z)Apz =—— o ,AXz
where M ale ) _pp «a-2)Aezdz PUAX ) Ly f ;
o ou o Lfdv o lou v 1 h/2
BT feTa % W, yw—m x Mwm:mﬁh/;w(a—z)mpzdz
52w 1 [o*w
T Ko @Z | g T and
and 1 (he
M(pxmzﬁf Ty ,AXzdz
1( w v 13 —hi2
fxe ™3 ﬁxacer& ’ (13) The change in these integrals due to the cross-sectional area of the

cords is neglected. Equatiori$2) and (14)—(17) yield the non-
Force and Moment Resultants. The force and moment re- zero components of the stiffness matrices:
sultants can be expressed as the sum of the force and moment

resultants of the matrix and the cords. The stiffness matrices are, =~ . _CA-vm)
A, B, C, andD, and the components of the stiffness matrices are 1m=A2am=C,  Aram=Azm=mC,  Aeen= 2 '
Aij, Bij, Cjj, andD;; . The force and moment resultants may be
expressed as . C(l-vy, D(l-vw,) D D
Asem= > Tz BT Baom=7
Ny &0 « (18)
N > X D(1- D(1—
e\ _ ol vm) (1-vy)
% B B B P Bon=" "7+ Bon=Cln=—55
N@X Yxe Xe
and Cim=— 3
M 82 Ky Dvpy
M, =c{ 2} -D Ky (14) clz'“:_T’ D11m=Doom=D, Dian=Doim=rmD,
MX(P 'ysp 2K
M g% Xe xe D(1—vy)
*
where
A A A B B B whereC andD are the extensional and flexural rigidity, respec-
1 12 16 1 12 16 tively, of the matrix:
A21 A22 A26 BZl BZZ BZG 3
A= , B= , Eh Enh
As1 Asz Aes Bs: Bsz2 Bes C=—— and D=—F——. (19)
1-vf, 12(1-vy,)
* * * * * *
61 62 Nep 61 D62 Des (15) o ) o o .
Simplified Equations. A simplified equation is achieved by
Cin Ci Cys D1y Dy, Dig choosing the appropriate scaling for the coordinates and the dis-
C c C D D D placements, substituting the coordinates and displacements in
C= o e e . and D= o e mes . terms of the scaled coordinates and displacements into the equa-
Ce1 Ce2 Ces Der De2 Des tion, factoring the appropriate constant, and neglecting terms with
¥ CL, CX x D&, DI a small remaining factor. The coordinates in terms of the scaled

coordinates are chosen to be
Matrix Force and Moment Resultants. The stresses are, , _x.ha _o\ha B
o,, andr,,, and the stress-strain relations may be expressed as x=Xvha, ag=®vyha and z=2Z, (20)

E whereX, @, andZ are the scaled coordinates. The displacements
m

"x:ﬁ(eﬁ VmE ), 0¢:m(8¢+ VimEx), in terms of the scaled displacements are chosen to be
m m
h h
and u=Uu \/;, v=V\[a, and w=W, (21)
Em
Txe= 571 1 . Vxe: (16) whereU, V, andW are the scaled displacements. The coordinates
2(1+vy)

in terms of the scaled coordinates and the displacements in terms
where E,,, is the modulus of elasticity and,, is the Poisson’s of the scaled displacements given by E@8) and(21) were used
ratio. The subscripten andc are used to denote variables relatedhy Donnell[14]. In some cases it is necessary to expand an equa-
to the matrix and cord, respectively. tion in a Taylor series before applying the simplification method
The matrix force and moment resultants are found by resolvimgitlined above.
the stresses acting on the surface of the element of the shell anédpplying the simplification method to the strain-displacement
may be expressed as relations, Eqs(12) and (13), yields
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v F
/ . )

M,

x3

Fig. 4 An element with the cord axial force, twisting moment,
and bending moment

o 0u o Lfdv o lou v
Ex==—, Eg==|T——W/|, Ye,=—t =,
)¢ ¢ al\de X ade  dX
9w 15°w d 2 -
= , = , o an =—.
ST KT a2942 o= aoxap’ 22

Applying the simplification method to the matrix force and mo-

ment resultants, Eq$14), (15), (18), and(19), yields
A1m=A2zm=C,  Apn=Aom=vnC,

C(1l—v,)
Aeem:Aéem:va
(23)

D1m=D2an=D, Dion=Doim=vmD,

D(1-vy)
Deem:Dgem:Tm’

and the other components of the stiffness matrices are equal to

zero. The strain-displacement relations given by H4®) and
(22) and the force and moment resultants given by Et@, (15),
(19), (22), and(23) are the same as those given by Donh&d].

Fig. 5 An element with (a) the force resultants and (b) the
moment resultants
€1 &7 K1
gy = eg -7y Ko (25)
Y12 7(1)2 2Ky

The cord axial straire;, change in curvatur., and twist per
unit length~, may be expressed as
and T.=kq,.

_ 5 \__0 _
ec=e1(Z2=2) =81~ ZeK1, K= Ka,

(26)

Figure 5 shows an element with) the tractions and the force

Cord Force and Moment Resultants. Figure 4 shows an el- resultants, andb) the moment resultants. The force resultants are
ement with the cord axial force, twisting moment, and bending,  N,,, N»;, N,, Q;, andQ,, and the moment resultants are
moment. The element rectangular coordinates and principal ax@$, M,,, M,;, andM,. The axial force, twisting moment, and
areXx;, X», andxs. The distance the cord ply is off the middlepending moment in the cord can be divided by the spacing of the

surface isz., and the radius of curvature of the cord plygs.
The cord axial forcé=., twisting momeniM,., and bending mo-
mentM,. may be expressed as

c tc
=Cue.tC,R ——==C3e.,+C4R
AE. 1€c 2RcTe ECRE 3€¢ 4R Te
Mbc _
and ?Rg =CsRck¢, (24)

cords and resolved into the force and moment resultants. Refer-
ring to Figs. 4 and 5, and comparing the force and moment result-
ants with the cord axial force, twisting moment, and bending mo-

ment yields

Fe Feze—Mpe Mic
Nlc:Fl Mlc:Tr Miz=— B (27)
and the other force and moment resultants are equal to zero. Note
that by dividing the cord axial force, twisting moment, and bend-

where A, is the metallic cross sectional ared, is the outside ing moment by the spacing of the cords that the cords are smeared
radius of the cordE, is the modulus of elasticity of the material,out in thex, direction but not in thec; direction. The position of

. Is the axial strainy, is the twist per unit lengthg .= 1/p. is the

the cord in thex; direction is significant where bending is con-

curvature, andC,, C,, C3, C,, andCs are constants which can sidered.

be determined analytically12].

The cord force and moment resultants may be expressed in

The strains arey, &, andyy,, the strains of the middle sur- terms of the strains and curvatures of the middle surface. An over-
face aree?, €3, andyj,, and the curvatures of the middle surfacévar denotes the principal coordinate system. Equati@ds-(27)

areky, ko, andk,,. The strains may be expressed as

Journal of Applied Mechanics
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N M,
Nlc B Sg B K1 21
2c _ o]
=A. €2 B K2 and

N 0 N,
2k 2
Nogc V12 12 . /
b
Mic &0 T M, *
MZC ~ é ~ “ 6
Mo =C¢) &2 —D¢y k2 ¢, (28) 4 o
9 2
lec Y12 K12 Mxy Ny __L:c M M
. . — 1y
where the nonzero components of the stiffness matrices are N '/\g My,
xy
- AcclEc o - AcclEch N2 \
A11c= b ) Bllczcllc:Tv
E _ ACER: *2
16c 2b ’ y (a)
— CsER? —  CsERY ALCEZ
Corc=~ 5 D= —+ b My,
~ AcCZEcRch
DT 29 ne
3 4 Nyx I M)’ 4‘
oL _ CiE(Rzz, 4D _C‘,ECRC ——pp / B
61c™ b , an L T ’Ml i
1
Figures 6a) and (b) show infinitesimal triangular elements of ?4:1\\ A M
the cord composite with the force and moment resultants acting on '/ Ny X1 \
them. The element rectangular coordinates »arg, andz The Ny N2
only finite dimension is the thickness The equilibrium equations
yield the transformation relations for the force and moment result-
ants: M,
Nx Nl Mx M 1
N N M M x2
y 2 y 2
=S and =S , (30
ny N12 Mxy M12 ( ) Y (b)
N N M M
yx = yx 2 Fig. 6 An infinitesimal triangular element with (a) the force

where the stress resultant transformation me#rig defined as  resultants and transformed force resultants and (b) the mo-
ment resultants and transformed moment resultants

cog 6 sirf 6 —sinfcosd —sinbcosd
sirf 6 cog 6 sin 6 cos# siné cosé
" | singcoss —sindcoss  cog o —sifo |’ A.=SARTR™!, B,=SBRRTR I,
sinfcosf —sindcosh —sir 6 cog ¢ ~ -1 = —1
C.=SC.RTR -, and D.=SD.RTR™, 34
. . . whereR is Reuter’s matrix defined as
The strain transformation matrix is denotedTasThe transforma-
tion relations for the strains are 1 0 O
e £y R=¢0 1 0. (35)
e e 0O 0 2
z =T Y3 where
Y12 xy Stiffnesses. The stiffnesses are the sum of the stiffnesses of
2 2 the matrix and cords and may be expressed as
cog 6 sir? 6 2 sinfd cosé N ) N )
T=| sife cod#  —2sinfcosd|. (32) A=Amt gl Ac, B= Bm+k§::1 Be.
—sinfcosd sinfdcosd cos H—sirt o N N
Equations(12), (25), and(32) yield C=Cp+ kZl ck, and D=Dp+ kzl DX,  (36)
(o] (o)
€1 Ex « wherek indicates thekth cord ply andN is the total number of
€9 &y ! x cord pli
2 y plies.
')/0 = T 70 and Ko = T Ky . (33)
12
> % K12 Kxy Differential Equations for the Displacements of the Middle

Surface. The differential equations for the displacements of the
Equations(28), (30), and(33) yield the transformation relations middle surface of the shell are found. Substituting Ed4), (15),
for the stiffness matrices: and(22) into Egs.(1), (8), and(9) yields
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*

1 Ags 1
Aqu” +—(A16+A61)u +— =z u +A” +5(A12+A56)v

62 . AlZ
+ _TU - ?W

! 62 " 1 //
_TW B W *5(28164‘8 )

*

1 e Be2 .
_¥(812+2866)W —?W +py=0, (37)

1 1 1
a(aAer Cepu"+ Py (aAytaAg—Cy—Chu'"+ =3 (aPAy

1 1
—Cyeu™ + 2 (aPge— Cge)v"+ 2 (aAgotaPys—Cey

1 1
JrCze)U“JF;:,S(a/A\zz Cpv"— (aAez Cew'

1 1 1
- ¥(aA22— Cpw’ — a(aBGl_ De)wW" — ?(3521

1
+2aBes_D21_2D66) - ?(aBsz"l‘zaBzﬁ_Dez

1
—2D W' - ?(aBzz_Dzz)W""i'P(p:O, (38)
and
Au | As 1 )
a ,+ _ZU +C11U”+ —(C16+C61+C 1)u"
1 Cas Az Az
= * yeoy =26 e 7726, TR22 .
+a2(C21+C66+C66)u + = u”t+ a v'+ 2 v
1 1
+Caev" + 7 (Coot Cost Coev"" + 22 (Cast Coot Cev’
Co ... Azz
?v - (821+012)W
1 * 1Ad l oo i
— ;(28264- Cert Coow' " — ?(Bzz"' Cow”—D W
1 * Inee
~ —2(Dy# Dyt 2Dgs+ 2D5W
l * e 1 *
— a(ZDle-‘r Dg1t Dgpw”* — §(2D26+ Do+ Dgy)w
D
- a—fﬁw""+ p,=0, (39)
where
(y=2) ang (=2 (40)
X do

Equations(37)—(39) are three linear, coupled, nonhomogeneous,
partial differential equations with constant coefficients for the
three displacements v, andw. The coupling is due in part to the A,= 2

extension-twist coupling of the cords.

Results

Axisymmetric Loading. Closed-form solutions are found for
a shell subjected to axisymmetric loading and no in-plane trac-
tions. First, a general solution for the displacements is developed.
Then, solutions for a semi-infinite cylinder and a finite cylinder

The shell is subjected to axisymmetric loading and no in-plane
tractions. Therefore,

px=0, pq}:O, PL(X). (41)

Since the loads are functions wfonly, the displacements of the
middle surface will also be functions of only and may be ex-
pressed as

and p,=

and w=w(Xx). (42)

Note that although the loading is axisymmetric, the displacement
v is not assumed to be zero. Since the loads and the displacements
are functions ok only, all derivatives with respect tg are zero.

u=u(x), v=uv(x),

General Solution. Solving Egs.(37) and (38) for u” andv”
and integrating once with respectxoyields

1
! " Ap(aAgs— Ceg)— AreaAgi— Coy) [ [As2(@Ass ™ Cool
—Asg(aAg— Cgr) W+ [(aAgs— Cge)B1s
—Ag(aBg—Dg) W' +B; (43)
and
’ 1 [ A
v Aii(aPgs— Cge) —Ars(@As1—Cea) (@ [As(@As~Ce2)
—A(ahs;—Cg) JW+[Aq1(aBg— Dey)
—(aAs1—Cgy)BygIW" [ + B>, (44)

whereB; andB, are constants of integration to be determined.
Substituting Eqs(43) and(44) into Eq. (39) yields

AW+ (A +Az)wW'+Aw=p, (45)

where the constant coefficiems, A,, Az, andA, and the forc-
ing p are defined as

1
Aq1(aAge— Cop) —Arg(aAgr—
—Cge)B11—Arg(aBg—Dgy) ]+ C1d A11(@Bg1— D1

A1=Dq;—

Co1) {C1ul(aAgs

—(aAs—Ce1)Buil},
Cp, 1
A a alA(aRe Co Adahe Cop] |1 A1A2 e
—Cos) — Are(aAss— Co2) ]+ C1d A1i(aAs— Co2)
—A(arg—Ce 1}, (46)
B, 1
Aa= a  a[Ap(aAss— Cee) —Arg(@As1— Ce1) ] 1Az (@

—Cee)B11—Ars(aBg1—
—(aAs1—Cs1)B11l},

A 1
a’[Ar1(aAgs— Coe) —Are(aAg1— Co1)

—Cgp) —Arg(aAg— Ce) ]+ Axd Ars(aAg— Cgo)
—A aAs—Ce) ]},

D) ]+ Azd Aa(aBg—Degy)

] {Ax[ A1 (aAgg

%nd

1
p= 5(A2131+A2652)+pz- (47)

loaded by a uniform transverse traction and by end loads are de-

veloped.

Journal of Applied Mechanics

Equation(45) has the solution
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w=e [B; cod ax) + B, sin(ax)]+ e’ Bs cog ax)

where the constant&s, Ag, A;, Ag, andAq are defined as

+ B sin ax)]+ Wy (x), (48) As=Ai(a’= %)= Az, Ag=2apAs, (56)
where the constant® and 8 are define as Az| L
B 7= _[_(A21Bl+AzeBz)+ Po| +C11B1+CieBo,
1 A4 1/2 (A2+ A3) 1/2 d A4 a
= E A—l + 4—,0\1 an A8:B[A1(3a2_,82)_A2]u
1/A, 12 (Ay+Ag) 1/2 and _
“l12\A] T TaA | (49) Ag=alA(3F%— ) +Ay]

Bs, B4, Bg, andBg are constants of integration to be determine
andw(x) is the particular solution that depends on the transver
loading p,(x). An alternate form of Eq(48) is

w=D;, cosh Bx)coq ax)+ D, cosH Bx)sin(ax)

gen determined in terms of the loads, and theraf6re ', andw
ave been determined in terms of the loads. The displaceraents
andv can easily be found by integrating the equationsufoand
v’, respectively, once with respectxoThe two new constants of

. . . integration represent rigid-body displacements and may be set
+ D3 sinh(Bx)cog ax) + D 4 sinh( 8x) sin( ax) +w,(X), equgl to zero.p g y P Y

(50) Finite Cylinder With End Loads. Consider a finite cylinder
whereD,, D,, D3, andD, are constants of integration to beof length . with end loads and the transverse tractims p,,
determined. The particular problem will determine which form ofvherep, is a constant. The boundary conditions akg=N, M,
the solution is most convenient. =M, andT,=T atx==*L, Q,=Q atx=—L, andQ,=—Q at
Consider the loads that may be applied to the end of a cylindg=L.

cal shell. The force and moment resultants acting on the end of thet is most convenient to use the form of the solutionviogiven
cylindrical shell areN,, N, , Q,, M,, andM,,, . These are the by Eq. (50). The transverse tractiop,=p,, andp,;=0 in Eq.
traction boundary conditions. Now consider the net moment @3). The cylinder is symmetric about thez-plane, and therefore
these force and moment resultants about the centerline of the tye transverse displacementmust also be symmetric, and the
lindrical shell. The sum of the moments about the centerline ovesnstants of integratioB, and D5 must be zero.

dé’he constants of integratioB,, B,, B3, B4, Bs, andBg have

the lengthAs=aA ¢ is
IMcL=My,As—a(Ny,As). (51)

The force resultaniN,, and moment resultartl,,, can be re-
solved into an equivalent shear force result@ptacting on the
end of the cylindrical shell. Dividing both sides of E1) by
aAs yields

:EMCL: MX‘P
aAs a

X Xg* (52)

When the transverse tractionfis=p,+ p;x, wherep, andp,
are constants, the particular solutiayy of Eq. (45) is

1
a (A21B1+AxgBs) + pot PaX|. (53)

W:_
PTA,

Semi-Infinite Cylinder With End Loads. Consider a semi-

infinite cylinder with a constant transverse traction and end loads.

The boundary conditions at=0 areN,=N, M,=M, Q,=Q,
andT,=T, and the transverse tractionps=p,, whereN, M, Q,

T, andp, are constants. It is most convenient to use the form of

the solution forw given by Eq.(48). The displacementv is
bounded inx, and therefords andBg must be zero. The particu-
lar solutionw,, is given by Eq.(53), wherep;=0.

Applying the boundary conditiond,=N andT,=T atx=0 to
Egs. (14), (15), (22), (43), (44), and (52), and solving for the
constants of integratioB, andB, yields

(aAgs— Cge) N+ aAgT

B, =
! Azi(aPgs— Cgg) —Ars(@Ag1— Ce1)

and
B.— —(ahg1— Ce)N—aA T
z A(aAge— Cge) —Arg(ahg— Cgy)

Applying the boundary condition81,=M and Q,=Q at X
=0 to Egs.(14), (15), (22), (43), (44), (48), (49), and(53), and
solving for the constants of integrati@y and B, yields

B :_AQ(M_A7)+AGQ B :AS(M_A7)_A5Q
3 Ashg— AsAg 4 Ashg— AsAg (;’5)

(54)

and
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Applying the boundary condition®N,=N and T,=T at X
==*L to Egs.(14), (15), (22), (43), (44), and(52), and solving for
the constants of integratid®, andB, yields Egs.(54), the same
as for a semi-infinite cylinder.

Applying the boundary condition®,=—-Q andM,=M at x
=L to Egs.(14), (15), (22), (43), (44), (49), (50), and(53), and
solving for constants of integratiod, andD, yields

~ —Ag(M—-A7)—AsQ _Ag(M—A7)+AsQ

T AR ARy M DTTRAT AR
(57)
where
As=[(a?~ B?)A;—Az]cog aL)cost L)
+2aA B sin(al)sinh(BL),
Ag=—2aA,Bcod alL)cosiBL)
+[ (= B%) A1~ Aj]sin(aL)sinh(BL), (58)

Az

Ay
Ag=a[(3B8%— a?)A;+A,]cosh BL)sin(al)
+BL(3a®~ B*)A;—Ay]cog al)sinh(BL),

1
Ar=~— 5(A21Bl+AZGBZ)+ Po|+C11B1+C16B>,

and
Ag=B[(3a2— B?)A,—A,]cosh BL)sin(al)
—a[(3B%— a?)A;+ A,]cog al)sin(BL).

The constants of integratioB,, B,, D,, D,, D3, andD, have
been determined in terms of the loads, and therafoye ', andw

have been determined in terms of the loads. The displaceraents
andv can easily be found by integrating the equationsufoand

v’, respectively, once with respectxoThe two new constants of
integration represent rigid-body displacements and may be set
equal to zero.

The current solution is compared with the commonly used ap-
proximate G-T and A—H solutions. Each shell considered has a
single cord ply on the middle surface. First, the results for an
axially loaded semi-infinite shell are examined. Second, the re-
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Fig. 7 Normalized displacements u/a, v/a, w/a versus nor- Fig. 8 Normalized displacement w/a versus normalized coor-
malized coordinate x/a dinate x/a

terial properties parallel and perpendicular to the cord direction,
respectively. The A—H equations for the in-plane material proper-

sults for a semi-infinite shell loaded by an edge moment are et>|((?s are
amined. Third, the results for an axially loaded finite shell are 4Ep,
examined- E1:Ecvc , EZZT, GlZZGml V12:0.5, and
The G-T equations for the in-plane material properties are
Vo1—= O (60)
E1=EcVetEn(1-Vo), The G-T and A-H equations and the solution given by H&is
are used to find the force and moment resultants and deformations
AEm(1—Vo)[EcVet+En(1-V()] of the shell.
E= - . G1=Gp(1- Vo), o
3E.V +4E(1-V,) (59) The cord volume fractioV, is
E Ac
2 VC:%' (61)

V1= 05, and Vo= Vle_ ,
1

The properties of the constituents, the geometry of the semi-
whereE is the tensile modulusG is the shear modulus; is the infinite cylindrical shell, and the geometry of the finite cylindrical
Poisson’s ratio; and subscripts 1 and 2 indicate the in-plane nshell are:

Steel cord: R.=0.430 mm A.=0.440 mn}
E.=200 GPa
C,=0.967 C,=0.0828 C,;=0.187
C,=0.0723 C5=0.0638

Rubber matrix: E,=10 MPa vn=0.5

Shell: a=0.318 m h=4R.=1.71 mm V.=0.3

Finite cylinder: 2.=2a=0.635 m

The details of the cord material and geometry can be found The curve for the current solution is dramatically different from
Paris and Costellf10]. the curves for the G—T and A—H solutions. The curvesita for
Consider a semi-infinite shell with the cords parallel to the shelthe G—T and A—H solutions are very close. At the end of the shell,
axis subjected to an axial loadl=C. Figure 7 shows the normal- where x/a is zero,w/a for the current solution is one order of
ized displacements/a, v/a, andw/a versus the normalized co- magnitude greater than those for the G—T and A—H solutions. A
ordinate x/a. The curves foru/a are indistinguishable for the larger displacement indicates a smaller bending stiffness. The
current, G-T, and A—H solutions. For the G—T and A—H solubending stiffness for the G-T and A—H solutions is larger than the
tions,v/a is zero. However, for the current solutiaw,a andv/a  bending stiffness for the current solution since the G-T and A—H
are of the same order of magnitude. The magnitude/af is  solutions smear out the cords over the thickness of the shell and
almost twice the magnitude ofa. The sign ofv/a is dependent the current solution does not. The valuevafa decays exponen-
upon the lay of the cords: here the cords are right lay and the sigglly and has nearly vanished whefa>1 for the current solu-
of v/a is negative; if the cords were left lay, the signudh would  tion and whenx/a>2 for the G—T and A—H solutions. Figure 9
be positive. The curves far/a are indistinguishable for the cur- shows the normalized moment resultavt /M versus the nor-
rent, G—T, and A—H solutions. The shell has significant extensiomalized coordinate/a. Again, the curve for the current solution
twist coupling due to the extension-twist coupling of the cords.is dramatically different from the curves for the G-T and A—H
Consider a semi-infinite shell with the cords parallel to the shedblutions. The curves for the G-T and A—H solutions are very
axis subjected to an edge momévit=D/a. Figure 8 shows the close. The value oM, /M decays exponentially and has nearly
normalized displacement/a versus normalized coordinai¢a. vanished wherx/a>1 for the current solution and whex/a
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>2 for the G-T and A-H solutions. The values wfa and the axial strain of the cords is negative and the cords are in com-
M, /M decay much more rapidly for the current solution than fopression; and for some angle in between, the axial strain and force
the G-T and A—H solutions. in the cords are zero. Whe# is approximately 0.956, the dis-
Consider a finite shell subjected to an axial Idde-C. The placements when the cord volume fractigpis 0.3 are equal to
cords are parallel to the shell axis. This is an intermediate lengthe displacements whevi, is zero, and the extension-twist cou-
shell based upon the analysis of a semi-infinite shell with an edgling of the axially loaded shell vanishes. At this angle, the axial
moment above. Figure 10 shows the normalized displacemestmin of the cords is zero and the cords are neither in tension nor
u/a, v/a, andw/a versus the normalized coordinatéa. These compression. A similar phenomenon has been observed for an
results for an axially loaded finite cylinder are similar to those fasixially loaded unidirectional cord-reinforced rubber shééi,
a semi-infinite cylinder given above, and the discussion is thiéhe shell has significant extension-twist coupling due to the cords.
same as the discussion given above for a semi-infinite shell withFigures 12, 13, and 14 show the normalized displaceméats
the cords parallel to the shell axis subjected to an axial Mad v/a, andw/a, respectively, versus the cord angldor the cur-
=C. rent, G—T, and A—H solutions. The curves for the current and
Paris and Costellp10] presented an analysis of cord composité—H solutions are indistinguishable, while the G-T solution is
cylindrical shells with the cords parallel to the shell axis. Theramatically different. All solutions neglect both the transverse
results for the current solution with the cords parallel to the shelhd shear stiffnesses of the cords. In addition, the current and
axis are indistinguishable from those results. A—H solutions neglect any change in the stiffnesses of the matrix
Consider a finite shell with the cords at an angle to the shell
axis subjected to an axial load= C/1000. Figure 11 shows the
normalized displacements/a, v/a, and w/a versus the cord
angle @ for the current and A—H solutions. The value @faries
from zero to#/2. For the cord composite sheV,. is 0.3. The
results for a pure rubber shell are given for comparison; a pure
rubber shell has no cords, akd is zero. The curves far/a, v/a,
andw/a for the current and A—H solutions are indistinguishable.
The normalized displacemenfa is zero whenV. is zero. Asé
increases from O tom/2, u/a and w/a first increase and then
decrease. Whenf is greater than about 0.667 and less than about
0.956,w/a is larger when the cord volume fractidfy is 0.3 than
when V. is zero. As# increases from 0 tar/2, v/a is at first
negative and then positive. These trends are caused by the Pois- 0 sl
son'’s effect of the matrix. For small cord angles the axial strain of 0 02 04 06 08 10 12 14 16
the cords is positive and the cords are in tension; for large angles Cord angle 6 (rad.)

0.0020

[ N =C/1000 TN
[ x=a
0.0015 |

0.0010 |

0.0005

Normalized displacement u/a

Fig. 12 Normalized displacement u/a versus cord angle @
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Fig. 10 Normalized displacements u/a, v/a, w/a versus nor-
malized coordinate x/a Fig. 13 Normalized displacement v/a versus cord angle 6
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0.0012 [y T T T T T T T differences in the predicted responses can be attributed to the
£ r N = (/1000 PN ] assumptions and approximations made in developing the current,
g 00010 Fx=a G-T E G-T, and A—H solutions.
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Zeroth-Order Shear Deformation
Theory for Laminated Composite
Meshanical Engineerl\inné [gparlt:r‘n?rx Plates

Indian Institute of Technology,

Kharagpur 721302, India . . . .
In this paper a zeroth-order shear deformation theory has been derived for static and

dynamic analysis of laminated composite plates. The responses obtained by the theory for
symmetric and antisymmetric laminates are compared with the existing solutions. The

comparison firmly establishes that this new shear deformation theory can be used for both

thick and thin laminated composite plates with high accurd®0Ol: 10.1115/1.1558077

1 Introduction midplane of the plate is considered as the reference plane. The
The use of composite materials has been significantly increasOri in of the laminate coordinate systemy,z) is located on the
during the past decades because of their large strength to Weiﬁfégpecfhg%giﬁ(z:ge?Osfutﬁg aﬁg t'lk']k?gjh?clzw 223 Zc?o(r)c'iitr;ates
and stiffness to weight ratios, high thermal stability, excellent reF the top and bottom surfacespof aﬂ;lh) layer are denoted by
sistance to environmental and corrosion attack, and high fatigile andh, , respectively. The fibers of tHah layer are oriented

strength. An excellent feature of composite materials is that thesg’ !

materials can concurrently be designed while designing the strlgésinmiggggegetigzgt);_rixtlﬁrozheh ttrha; ?ﬁ’ﬁfﬁegﬁs%?g]e%;on of
tures. A great deal of research¢$-7], has been carried out to- 9 )

wards the development of various theories for analyzing the Iarg]ﬁe‘ theory first aims at satisfying the transverse shear stresges,
i

nated composite structures. These theories can broadly be divi 7y, 10 be zero at the top and bottom surfaces of the plate

into two categories, namely, equivalent single-layer thé&$L) th.éfﬂgg’;n?nrgﬁjé? t%agzkt)i(s)g t\rll?snigﬁgitcilzﬁ ?r?g %V_Z Tzl:r:gscisi;hsa ce-
and layer-wise theories. Among the ESL theories, the classi | ; ' p P

laminated plate theoryCLPT), [1], is the simplest one and is%ﬁlem":"l“I andp at any point §,y,2) of the laminate in thex and

applicable to thin laminates only. This theory cannot predict a%{c:)(rjrqui\(t:i%?\n:g ?;Eill)cl)vt\?se' expressed to describe the kinematics of de-

curate results for thick laminates as it does not allow to consider

transverse shear deformations. Examples of ESL theories account- AW(X,Y,t)

ing for transverse shear deformations are the first-order shear de- u(x,y,z,t)=up(x,y,t)—z o

formation theory(FSDT), [2], and the higher-order shear defor-

mation theoriegHSDT), [3—6]. Although HSDT predicts a more 113/z z\3

accurate response than the FSDT for both highly thick to thin - E(ﬁ) *Z(H) }Qx(x,y.t) 1)

laminates, the analysis using HSDT involves more computational x

effort than using the FSDT. However, FSDT requires the use of AW(X,Y,1)

appropriate shear correction factor for accurate representation of v(X,Y,z,t)=vo(X,y,t)—2

transverse shear deformations. The layerwise theories predict %

highly accurate responses at the ply level where material discon- 113/z Z\3

tinuities take place but the complexities involved often restrains + |2 ﬁ) —2(5 Qy(x,y,t) )
y

one from using these theories.
Recently, a zeroth-order shear deformation the@$DT) has where,u, andv, are the displacements at any poirty,0) on the

been derived by Shimig], which predicts accurate results forreference plane in the andy-directions, respectivelfd, andQ,

both thick and thin isotropic plates. The theory has the number gfe the transverse shear stress resultantshyignd\, being the

advantages over the CLPT and FSDT. For example, it satisfigsknown constants. Evaluation of these constants results in a new

zero transverse shear stresses on the top and bottom surfacegispfiacement theory. The constantsand A\, can be determined

the plates, does not require a shear correction factor and avdigjsconsidering the definitions of the transverse shear stress result-

shear locking. However, the theory has not yet been extended #itsQ, andQ, . For laminated structures these are defined as

the analysis of laminated composite structures. In this paper, an N

endeavor has been made to develop a zeroth-order shear deforma- kel P 1 ‘

tion theory for laminated composite plates. Qx=k71 J; oydz  and Qy=k21 fh oydz. (3)

- k - k

2 Zeroth-Order Shear Deformation Theory (ZSDT) The linear constitutive relations fdth orthotropic layer is given

Consider a rectangular laminated plate madeNafiumber of by
orthotropic layers as shown in Fig. 1. The length, width, and ck. ¢k ck 0 0
thickness of the plate are denoteddb, andh, respectively. The o) o mz e
Cl, C; Cs 0 O

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF K K K
=[Cs Cx% Ce O O Exy (4)
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on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De-
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N

he.. [h

_ELI_,X

Fig. 1 Laminate configuration

elastic constants with respect to the laminate coordinate system3in Analysis of Laminated Plates Using the Zeroth-
the strain vecto,, s, are the normal straing,, is the inplane  Order Shear Deformation Theory (ZSDT)
strain, ande,,, ey, are the transverse shear strains. ) ) . ) .
Using Egs.(1)—(2) and the linear strain-displacement relations !N this section, the formulation for the analysis of laminated
for infinitesimal strains[9], the expressions fo,,, &, are ob- plates using the zeroth-order shear deformation theory derived in
the previous section has been presented. Using the displacement

tained as X - .
) 5 field for ZSDT given by Egs(1)—(2), the expressions for the
1(3 6z 1(3 6z normal and in-plane shear strains can be written as
exz= | 57— 73] Qx and eyz=y | on~ Hh3 Qy-
Mi2Zh h Ayl2h h g dw 1[3(z z\ 3] 9Q,
© - 3 a)-2lE) [ 5
It may be noted from the expressions for the in-plane displace- X
ments that the effect of transverse shear deformations has been dug Pw 1[3(z z\3 aQy
incorporated in the in-plane displacements through the use of sy:a——2—2+— —(—)—2(—) —_, (7
X day*  Ay[21h h ay

transverse shear stress resultants. Hence, the expressions for trans-
verse shear strains given by E&) do not explicitly contain the Ay v 2w
rotational displacements due to the transverse shear deformations. Exy= -+ —-——22
Thus the present theory may be called as a zeroth-order shear ay X Ixay
deformation theory for laminated structures. It can be observed 3/z z\?2/14Q, 1 4Q
from (5) that the transverse shear strains are zero at thezop ( + —(—) —2(—) (— —+ — —y)
=h/2) and bottom £= —h/2) surfaces of the plate thus satisfying 2ih h N 9y Ay dX
the traction free conditions far,, anda,,. In this regard, it may The total potential energy of the plate is given by
be mentioned here that the high-order shear deformation theory N
(HSDT) developed by Redd}6] also satisfies the zero transverse 1 fafb( 2 hi+1
2 JoJo\izx

shear stress conditions on the top and bottom surfaces of the plate. U= (oxext oyeyt OxyexyT OxzExs
But the Reddy’s theory6], uses high-order rotations to account
for the effect of transverse shear deformations whereas the present

theory uses transverse shear stress resultants to account for the +0y.e,,)dz—pw |dxdy (8)
same. Finally, using5) in the constitutive relations fow,,, oy,

and then substituting the resulting relations(3, A, and\, can .

termined f tri i tri ol _which p(x,y) is the externally applied distributed load acting
g:y(:r?rr?ermlcnigg?er-[s))l/m?niiﬂgtzgdaz%%wg?e ric cross-ply and eﬂong thez-direction. The kinetic energy of the plate can be
’ expressed as

N
3 2 N
A=, CEl—(h1—h)— 5 (hi —h3} 1 ey fafo
X kzl 55[2h( kr1 ™M)~ 13 (Mg 1= i) TZEE “f fpk(uz+v2+W2)dXdde )
k=1 Jn, JoJo

hy

and
Substituting Egs(8) and(9) into Hamilton’s variational principle

N 3 2
_ k|2 Chy_ S /3 3 t
Ay kZl CAA[Zh(th h = 13 (i1 hk)} (6) 5[ 2(T—U)dt=0, (10)
t
From Eq.(6) it can be observed that the constantsand A, . . ' . .
depend on the material properties and thickness parametersthsr following governing equations are obtained:
each layer. Evaluating these constants one can proceed for the N.  oN oW
formulation of the static and dynamic behavior of laminated plates Xy X loUg—1,— + 8 QX (112)
and shells. The next section is concerned with this formulation. X ady X Ay
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8Ny Ny | MW g . "
x oy Vo~ v )\_yQy (12)
My My, My
+ +
ax? axay — ay? P
e Ao . Mo | W . W
W0 e T Ty Tl o T y?
10Q, 1 4Q,
+__
ol 3 A X Ny dy (13)
1% 4 J 4 4
& MX_WPX +W Mxy_Wny - QX_FRX
;o lg. lgow
)TZQX " —Up— N, X (14)

J 4 J 4 4
ax | Mo 32 P+ 5y My 3Py 71 Q7 2Ry
—Uy— — —. 15
)\ZQy y (O )\y &y ( )

In Egs. (11)—(19), the various stress resultantsl,(, N,, N,y,

Ry, andR,) and moment resultantM(,, M, M,,, Py, Py,
andP,,) are given by
K1
(N, My Py = E o¥(1z2,2)dz,
k=1 Jhn
N rh
k+1 K 2
My,Py):E J’ oy(12,2)dz,
k=1 Jhny
( Xy Xy! xy) z ny 12 Zz)dz
and
(Re,Ry)= El 2%(0%,,0% )dz. (16)

hy

The various mass parameters appearingliy—(15) are defined
as

N
1
)=> p(1,2,2%,2%,2*,2%dz,

k=1

(Tos11,12,15,14,16

17)
9 6 6 3 2
|7:WI2_FI4+FI6’ |8:%Il_ﬁ|3 and
3 2
|9:%|27F§|4.

. . . . . w
The study is concerned with obtaining the Navier solutions us-

ing the ZSDT developed here. Accordingly, two typesl and

ss? of simply supported boundary conditions admitting the
Navier solutions have been extracted from the variational prin-

ciple. The ssl type boundary conditionsxat0 anda are

ow

vo=0, w=0, WZO, x=0, My=0, P,=0, Q,=0,
and those ay=0 andb are
ow
UOZO, WZO, (7_X:O, Ny:O. My:Oy Py:0| Qy:o
(18)

The ss2 type boundary conditionsxat 0 anda are

376 / Vol. 70, MAY 2003

ow

Up=0, w=0, WZO' Ny=0, My=0, P,=0,
Qx=0,
and those ay=0 andb are
ow
vo=0, w=0, —=0, N,=0, My=0, P,=0, Q=
(19)

In order to obtain the Navier solutions, symmetric and antisym-
metric cross-ply laminates and antisymmetric angle-ply laminates
are considered. The Navier method admits ss1 type boundary con-
ditions for symmetric and antisymmetric cross-ply laminates. For
antisymmetric angle-ply laminates ss2 type boundary conditions
must be considered for employing the Navier method. The vari-
ablesug, vy, W, Qy, Qy can be written in terms of eigenfunctions
satisfying the ss1 type boundary conditiqid$) as follows:

© ©

o= 3, 3, Unplticos 2 sin"g>
—7 P mn()cosasmb

i mmx  nwy
vozz E Vn(t)sin——cos——,
m=1n=1 a b
N marX nm
sz E Wn, (t)sm—sm—y
m=1n=1 a b

nwy

2 men(t)cos¥3mT (20)

0 0

E E Qymn(t)sm—xcosngy

m=1n=1

in which m andn indicate the mode number. For ss2 type bound-
ary conditions(19) the variablesi,, v are to be considered dif-
ferently as

i mmrX n7Ty
=E E U pn(t)sin——cos——
o a b
(21)
nwy

mmx
an(t)cosTsmT

g
M s
M s

3
[
-
]
I
-

In the same manner, the load function can also be expressed in the
double Fourier series form as

max _ nwy

Z Pmn(t)sin——sin——
1n=1 e a b

M 8

(22)

3
Il

here

marx Ty
Pmn(t) ab p(x,y sm—sdexdy

Using Eq.(20) or (21), (16) and(17), the governing equilibrium
Egs.(11)—(15) are to be written in terms of the unknown coeffi-
cientsUmn, Vinns Wins Qxmn, @and Qyn, to obtain the Navier
solutions for the laminated plates considered. It may also be ob-
served from(6) that the values ok, and\, will be of the order of

the elastic coefficient€ss and C44 Hence the coefficients of

inertia associated withow/ 9x, dw/dy, QX, Qy, 0Qxlﬁx and

aQ /dy turn out to be negligibly small. Also, for symmetric and
antlsymmetrlc laminate$, and lg are zero. Thus the resulting
governing equations can be expressed in the matrix form as
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- K K K K K The stiffness parameters appearingdp (i,j=1,2, ... ,5) are
IOEJmn Kll K12 K13 K14 K15 Umn defined as
12 Koo Koz K Kos|| v
o/ m (A1 1.0y By )
IsWint +| Kis Koz Kaz Kag Kzs|| Wip P
0 Ko Kg Kaz Ka Kus|| @ 1 .
0 41 42 43 44 45 QX:: =2 Cﬁ(l,z,zz,z:",z“,zs)dz (i,j=1,2,6).
L Ks1 Ksz Ksz Ksg Ksg Y =
0 (24)
0 Setting the inertia terms in E@23) to zero, the solutions for
={ Pmnt . (23) Static analysis can be obtained. For dynamic analysis, the me-
0 chanical load is set to zero and the periodic solutions of the un-
0 known coefficients are assumed as
In which the elements of matrices will differ from one type of Umn(t) =Umg€'“mt, V(1) =V e o,

laminate to the other. In case of antisymmetric angle-ply laminates W, (1) =V_V giomd,

these are obtained as . (25)
Kii=(Ana?+AeeB?), K= aB(AtAc), Qund )= Qumr ™, Qur(t) = Qypm'
208/ 3 > wherei= =1, wn, is the frequency of natural vibration associ-
Kis=—(3B1ga?B+By8%), Kip=— N (Zh Big— WElG)’ ated with the moder@,n) andUn, Vinn, Winn, Qymn, @andQymn
X are the unknown amplitudes of vibration. In the absence of exter-
17/ 3 2 2 nally applied mechanical load, substitution(@b) into (23), leads
Kls—}\—y[(%B 16713 Eigla®+ >h Bog— FEze)ﬁ } to the following eigenvalue problem: B
a 12 o | 0 O
Koo= (A2 +Agear®), Kpg=—(3ByeaB°+Biear”), o T ° Yrnn 0
o1 Uy o3 _wl?nn 0 |0 0 V =<0
N M
- a a a 0O 0 1 W 0
Kaa=1~"Kis, 31 @3 Q33 5 mn 26
2aB 2 The various coefficients appearing in Eg86) are given by
Kzsz)\_ 2n Bas— h3 Ezs|,
y a11=Kp+ 0Kt dy1Kas,  @1o= Koot 00K a1 0y0K s,
— 4 22 4
Ka3=D11a"+2(D12+ 2Dgs) "7+ D 228", o137 Kyt Ox3Kiat OyaKas,  a21= Kot Oy Kogt 0ysKos,
Kag= — i“iD 2 2 Fy e+ 3 éFlZ) 5= Koot OyoKoat 0yoKos,  aps= Kozt 0yaKost 0ysKos,
A\ 2h hd 2h h
X 317 Kyat 0y Kag+ 0y1Kss, 3= Kogt OyoK gt 0yoKass,
3 2
+| 55 Des™ 13 Fee) ] ap?|, a33= K3zt Ox3Ksat Qy3Kss,
in which
1(/3 2 3 2
- = — KiKa5— KK KK 44— K4iK
Kss )\y[(ZhD 29— h3F22 a®+ 2h 12— h3F12) = 5if 457 Ky; 55' ayi= 51447 Ky 54' (i=1,2,3).
K 44K 45— Ks4K 45 Ks4K 45— K4sKss
+ iDee— EF%) ] a8? The eigenvalue problem given by E@6) yields the natural fre-
2h h3 ' quency of the laminates associated with a particular mage).
2h\ 2h\, 2hn
K= 3 Kia  Kao= 3 Kas, Kaa= 3 Kas, 4 Results and Discussion

1 3 4 3 Numerical results for both .static and dynamic analysis using the
Kys= [)\— [ (% Dy~ sFut 55 Hn) a? zeroth-order shear deformation the¢AEDT) developed here are
X evaluated for symmetric and antisymmetric cross-ply laminates
3 4 8 and antisymmet_ric angle-ply Ia_lminates. Two materials are consid-
+ (% Des— 13 Fest 305 Hes ered for evaluating the numerical results as follows:

Material 1: E, =172.9 GPa, E;=E, /25, G ;=0.5E,

, 6 24
B 7FD55+$F55 +1 y

113 4 8
K45— [Zh(D12+D66) ha(Flz"":ee)+ hs(H12+H66) ap, G1=0.2E1, v 1=v17=0.25
2h)\y 2h)\y )\y Material 2: ET:21O GPa, ET:EL/4O’ GLT:0'$T1
Ks1=Kag, Ksz*TKzsl Ksa*TKssx K54*)\_XK45, Grr=0.5E1, v r=vr71=0.25

1(/3 4 ) whereE andEq are the longitudinal and transverse elastic modu-
K55=[—[ (—DZZ— FFZZJF szz) B? lus, G_r, Gy are the shear moduliy 7 is the major Poisson’s
ratio, andv+t is the minor Poisson’s ratio with and T signifying

3 4 8 6 24 the directions parallel and perpendicular to the fiber direction,
(Zh Dgs— h3 3 Feet 3n° Hes) a’— 3 Dyt s F44] +1|, respectively.
m N 4.1 Results for Static Analysis. For static analysis the
- 2, p2 _mm _nm plates are subjected to a sinusoidally distributed transverse load
ls=lo(a”+ 80, a=—m A= and is given by
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Table 1 Center deflection and in-plane stresses of square 0.5

cross-ply (0°/90°/0°) plates (Material 1) | —EZSDT ,'//
— = = = [ [---- FSDT
a’h Source wXx 107 oy ay Oxy | //,'(
ZSDT 1.922 0.735 0.528 0.050 0.3 1 :
4 FSDT 1.776 0.437 0.477 0.037 : )
ELS 1.920 0.755 0.534 0.051 -
ZSDT 0712 0571 0270 0028 - i
10 FSDT 0.669 0.513 0.254 0.025 0.1 ¢
ELS 0.700 0.590 0.288 0028 o
ZSDT 0.511 0.547 0.205 0023 J
20 FSDT 0.491 0.532 0.199 0.022 i
ELS 0.520 0.552 0.210 0.023 -0.1
ZSDT 0.434 0.540 0.181 0.021 -
100 FSDT 0.434 0.538 0.180 0.021 i ,
ELS 0.436 0.552 0.181 0.021 i ,
-0.3 e
-0.5 L™ P L

e ™ T 08 -06 -04 -02 0 02 04 06 038
p(x,y)=qsin a sin b (27) . -
GX
in which q is the amplitude of the load. Accordingly, usimg ) o ) )
=n=1 and neglecting inertia of motion, ER3) can be solved Fig. 2 Varle_mon of in-plane normal stress o, across the thick-
for evaluating the unknown coefficients,,, Vin, Wmn» Qxmns ness (Material 1)
andQymn. Then using Eqgs(1), (2), (4), and(7), the center de-
flection and maximum stresses are computed. The following non-
dimensional parameters are used for reporting the results a® [p
E_T.

Omp= wmn? (29)
_ E;h® _ n?
W= 2 w(al2p/2,0), Uﬁﬁ(fx(a/z,b/li h/2), Table 4 contains the nondimensionalized fundamental frequencies
(28) @m, of a simply supportedssd cross-ply laminated0°/90°/90°/
h2 h2 0°) squfare] plate. The table also pres%nts] the results obtained by a
—__ - - __ - HSDT, [11], and a closed-form solutiof12]. It may be observed
Ty b%q oy(af2DI2,1/6), oy b%q 7xy(0.0=0/2). from this table that the fundamental frequencies obtained using

ZSDT are in excellent agreement with those obtained by the

Table 1 contains the nondimensionalized center deflection aR$DT and closed-form solutions fa/h=10. In case of very
maximum in-plane stresses for symmetric cross{1$/90°/09 thick plate @/h=4), the ZSDT slightly underestimates the pre-
square plates predicted with the ZSDT derived here. The tallietions depicting further effect of transverse shear deformations.
also contains the results obtained by a three-dimensional elasticigble 5 displays the frequencies for higher modes of symmetric
solution (ELS), [9], and the first-order shear deformation theoryross-ply(0°/90°/09 square plates. In this case results are com-
(FSDT), [10]. It may be observed from this table that the resultgared with those obtained by the FSOTQ]. The comparison
obtained by the present zeroth-order shear deformation theory midicates that the ZSDT underpredicts the frequencies indicating
in excellent agreement with the elasticity solutions. When conthe pronounced effect of transverse shear deformations on the
pared with the elasticity solution€ELS), ZSDT predicts more
accurate results than the FSDT for both thick and thin laminates.
The through thickness behavior of the plates are also examinead 0.5
with the ZSDT. Figures 2—4 illustrate the distribution of in-plane ' H —— ZSDT
stresses across the thickness of a that& 4) simply supported i ---- FSDT
(ss) symmetric cross-ply0°/90°/09 square plate. Since the nor- .
mal stresses are nonlinear across the thickness, it indicates that 0.3 - I

ZSDT can predict warping of the cross section. Table 2 contail
the numerical results for center deflection of antisymmetric cros -
ply square plates of two and six orthotropic layers. The table al: 0.1 I _
shows the prediction obtained with a HSD)®), and FSDT[10]. o} -

It can be observed from this table, that the predictions by th< r /
ZSDT differ negligibly from that by the FSDT for both thick and N s /
thin antisymmetric cross-ply square plates. The center deflectic
of two and six layer antisymmetric simply supportes? angle- |
ply (6/—#l . ..) square plates subjected to the sinusoidal loadir - l
have been predicted by the ZSDT for different fiber orientatior 0.3

(0) and are presented in Table 3. The predictions for the same 1
the HSDT,[6], and FSDT/[10], are also given in Table 3 for the i
purpose of comparison. It can be observed that the ZSDT al s 3
predicts the deflection for antisymmetric angle-ply square plat  -0.5 +——— — ‘ : : :
with high accuracy. 06 04 -02 0 0.2 0.4 0.6

4.2 Results for Dynamic Analysis. The accuracy of the G
present ZSDT is also investigated through free-vibration analysis

of laminated composite plates. A nondimensional frequency pgig. 3 Variation of in-plane normal stress o, across the thick-
rameter has been used for presenting the results as follows: ness (Material 1)

M
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0.5 - - Table 4 Fundamental frequency of symmetric (0°/90°/90°/0°)
[ \ . - ZSDT square laminated plate (Material 2)
r \ ) alh 4 10 20 100
0.3 L ZSDT 8.966 15.061 17.641 18.835
HSDT 9.261 15.090 17.630 18.830
Closed form 9.497 15.123 17.662 18.835
I solution
0.1
=
N
04} is able to predict more pronounced effects of transverse shear
r deformations as it underestimates the results for very thick plates
- (a’h=4).
0.3
i D Conclusions
-0.5 — SN In this paper, a zeroth-order shear deformation theory for lami-

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 nated composite plates have been derived. The following main
points can be outlined from the investigations carried out in this
Xy paper.

al

Fig. 4 Variation of in-plane shear stress o, across the thick-

ness (Material 1)
Table 5 Natural frequencies for higher modes of cross-ply o/
90°/0°) square plates (Material 1)

higher modes of vibration for thick plates. The fundamental natu- a’h
ral frequencies of simply supported antisymmetric cross-ply

square plates of two and eight orthotropic layers have been pre- m n Theory 10 100

dicted by the ZSDT for thick and thin plates and different modu- 1 2 ZSDT 18.332 22.810
lus ratios €, /E,). These are presented in Table 6 and compared FSDT 18.729 22.817
with the predictions by the FSDT10]. The results can be ob- 1 3 Egg:rr g’g'égg 28'%?3
served to be in very good agreement with that by the F$Da], 2 1 7SDT 28.875 56.075
Table 7 displays the fundamental natural frequencies of simply FSDT 30.991 56.210
supportedss? antisymmetric angle-plyd/— 6/ . . .) square plates 2 2 ZsSDT 32.270 60.076
predicted by the present ZSDT, HSOT0], and FSDT[10], for 1 4 EEBTF ii'ég‘; gg'gé]é
different fiber orientations and number of layers. Without excep- ESDT 45.923 66.364
tion, the results are found to be in excellent agreement. But when 2 3 ZSDT 40.077 70.638
compared with the HSDT,10], it may be noticed that the ZSDT FSDT 42.585 70.764

Table 6 Fundamental natural frequencies of simply supported
Table 2 Deflection of simply supported (ss1) antisymmetric antisymmetric  (0°/90° . . .) cross-ply square plate (Material 1)
square cross-ply laminated plate  (Material 1)

E, /E;=10 E /E;=25 E /E;=40
a/h alh  Theory N=2 N=8 N=2 N=8 N=2 N=8
N Theory 4 10 20 100 70 zsbT 7466 9423 8925 12565 10133 14473
ZSDT 2.001 1.216 1.102 1.065 FSDT 7.454 9.450 8.900 12.628 10.027 14.562
2 HSDT 1.998 1.216 1.102 1.065 20 ZSDT 7.807 10.098 9.495 14229 10.871 17.148
FSDT 2.149 1.237 1.107 1.065 FSDT 7.802 10.102 9.474 14241 10.840 17.169
ZSDT 1.541 0.638 0.506 0.463 100 ZSDT 7.926 10.344 9.688 14912 11.152 18.364
6 HSDT 1.541 0.638 0.506 0.463 FSDT 7.926 10.344 9.687 14912 11.150 18.365
FSDT 1.547 0.635 0.505 0.463
Table 7 Fundamental natural frequencies of simply supported
Table 3 Center deflection of simply supported antisymmetric antisymmetric ~ (ss2) angle-ply (/—@ ...) square plate
(ss2) angle-ply (/—@ . ..) laminated plate (Material 2) (Material 2)
0=5° 6=30° 0=45° =5 =30 =45
a’lh  Theory N=2 N=6 N=2 N=6 N=2 N=6 a/h Theory N=2 N=6 N=2 N=6 N=2 N=6
4 ZSDT 1258 1.226 1.078 0.884 1.018 0.837 4 ZSDT 8.495 8.618 9.136 10.126 9.414 10.408
HSDT 1263 1.228 1.084 0.885 1.020 0.837 HSDT 8.715 8.859 9.446 10.577 9.759 10.895
FSDT 1.316 1.265 1.215 0.899 1.157 0.853 FSDT 8.531 8.737 8.917 10.502 9.161 10.805
10 ZSDT 0.481 0.445 0591 0.300 0.557 0.274 10 ZSDT 14.226 14.841 12871 18.126 13.259 18.953
HSDT 0.485 0.448 0592 0.301 0.558 0.274 HSDT 14.230 14.848 12.873 18.170 13.263 19.025
FSDT 0.488 0.449 0.610 0.299 0.577 0.273 FSDT 14.179 14.840 12.681 18.226 13.044 19.025
20 ZSDT 0.356 0.320 0.516 0.212 0.490 0.190 20 ZSDT 16.657 17.618 13.847 21.650 14.233 22.867
HSDT 0.358 0.321 0.518 0.213 0.489 0.191 HSDT 16.656 17.619 13.849 21.648 14.246 22.877
FSDT 0359 0.321 0.522 0.212 0.494 0.190 FSDT 16.641 17.622 13.790 21.679 14.179 22.913
100 ZSDT 0.316 0.279 0494 0.184 0.467 0.163 100 ZSDT 17.781 18.935 14.223 23.295 14.621 24.740
HSDT 0.316 0.279 0.494 0.184 0.467 0.163 HSDT 17.780 18.935 14.223 23.295 14.621 24.739
FSDT 0.316 0.279 0494 0.184 0.467 0.163 FSDT 17.780 18.935 14.220 23.297 14.618 24.741
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Refined First-Order Shear
—_— Deformation Theory Models for
Dipartimento i Meécanitlarslt(r:u?turglg c om p 0S ite La m i 1] ates

Universita di Pavia,

2710\(/)|&1P£5|r£at|?a:y In the present work, new mixed variational formulations for a first-order shear deforma-
g-mail: auricchio@unipv.it tion laminate theory are proposed. The out-of-plane stresses are considered as primary
variables of the problem. In particular, the shear stress profile is represented either by
E. Sacco independent piecewise quadratic functions in the thickness or by satisfying the three-
Dipartimento di Meccanica, Stuutture, A. & T., dimensional equilibrium equations written in terms of midplane strains and curvatures.
Universita di Cassino, The developed formulations are characterized by several advantages: They do not require
Via Di Biasio 43, the use of shear correction factors as well as the out-of-plane shear stresses can be
03043 Cassino, ltaly derived without post-processing procedures. Some numerical applications are presented
e-mail: sacco@unicas. it in order to verify the effectiveness of the proposed formulations. In particular, analytical
solutions obtained using the developed models are compared with the exact three-
dimensional solution, with other classical laminate analytical solutions and with finite
element results. Finally, we note that the proposed formulations may represent a rational
base for the development of effective finite elements for composite laminates.
[DOI: 10.1115/1.1572901
1 Introduction culty, two different approaches can be found in literature. The first

The modeling of composite laminated structures is one of t
most active research fields of the last decades, since accu

. . - Numerical procedures, developed within the finite element
stress analyses are required to design structural parts of mech ihod, were proposed in RefEl3,14, where new effective
cal, naval, aeronautical, and aerospace, as well as civil constrH,jl ! iy

tions {fhinate elements were presented. The second approach is based
: . . . . on the refinement of the FSDT model, e.g., see REfS,16.
_In fact, composite Iamlnate_s present an anisotropic respong@in this context, Rolfes and Rohwgt 7] and Rolfeqd 18] pro-
with extension-bending coupling and non-negligible shear def 5sed an improvéd composite finite element based on FSDT,
mations in the thickness. Furthermore, to prevent the developm ich does not need the computation of the shear correction faci

of the delamination, which strongly limit the performances of, g They computed the transverse shear stresses from equilib-

composnes[l],' an accurate evaluation of the interlaminar ou_t-of-ium equations and they were able to determine a priori the shear
plane stresse€.e., the shear stress and the normal stress in t

thick directi t the interf bet ] di Clami Fofile introducing suitable simplifications, i.e., neglecting the
ickness direction at the interface between two adjacent laminggesence of membrane forces and assuming two simultaneous cy-

's required. . . lindrical bending modes.

Actually, several laminate models are available in the Ilterature,Several higher-order shear deformation theories were devel-
[2]. In particular, two different approaches may be d's“”gu',ShP%)ed in the literature[19,20, within the ESLTs; they consider
in the laminate modeling, which lead to two classes of laminajgaher.order terms of the thickness coordinate in the representa-
theories: the equivalent single-layer theo(ESLTS and the 1ay- o1 form of the displacements.
erwise theoriegLWTs). , ) , The LWTs are obtained assuming independent shear deforma-

The ESLTs represent the direct extension of plate theories #gy, \yithin each laminate layef21—23, so that the displacement
laminates, so that the laminate is reduced to a single-layer plgifq s continuous in the thickness, while the transverse shear
with equivalent anisotropic material properties. In fact, the classliain can be discontinuous along the out-of-plane coordinate. The
cal laminate theoryCLT), [3,4], is an extension of the classical nknown functions for the LWTs depend on the number of layers
plate theory based on Kirchhoff-Love assumptions, i.e., it negleGSihe |aminate. A layerwise finite element formulation, which can
the shear deformation in the thickness of the laminate. The firgfg implemented in FEA commercial codes, was proposed in Ref.
order shear deformation theofSDT) is an extension of the [5g]: therein, Barbero discretized each layer in displacement-
Reissner(5], and Mindlin,[6], plate models to the case of lami-y55eq three-dimensional elements with two-dimensional kine-
nated anisotropic plates. The FSDT presented in Ref8] allows 1 4tic constraints.
the determination of satisfactory solutions for a wide class o The zig-zag theories are deduced from the LWT enforcing the
laminate problems. In particular, accurate results are obtained,ntinity of the out-of-plane shear stresses: thus, the number of
proper values of the shear correction factor; are adopted. Unfgfnowns in the zig-zag theories do not depend on the number of
tunately, the exact values of the shear correction factors are knoi‘é{Qers [27-30. In particular, Carrer430] developed multilayer
a priori only for very simple case$9]. To overcome this diffi- 5.4 zig-zag theories in the framework of the Reissner mixed
Comibuted by th e . " © variational theorem.

ontributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i i i

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- Amo.”g the several laminate theories, the FSDT appears s'mple
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March 3,and efficient fO!’ many structural problems. In fact, as e_mphaS|z_ed
2002; final revision, October 4, 2002. Associate Editor: M.-J. Pinder@above, FSDT is able to predict the response of laminates with
Discussion on the paper should be addressed to the Editor, Prof. Robert M. MCMeghtisfac’[ory approximations for most structural problems. On the
ing, Department of Mechanical and Environmental Engineering University . ' ¢
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted %yﬁer hand, finite elemem Com.merCIaI. codes, mamly based on
four months after final publication of the paper itself in the ASMBUBRNAL OF |splacement_formulatlons, requires as |n'put data the values O_f the
APPLIED MECHANICS. shear correction factors. Moreover, the displacement formulations

approach consists in the development of iterative predictor-
?érrector techniques, as proposed by Noor and co-workigs;
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of plates and laminate theories are able to recover satisfactovhiere the plane=0 identifies the midplangl of the undeformed
values for the in-plane stresses, while out-of-plane shear and nplate. The laminate is made oflayers and the typicétth layer
mal stresses are obtained after manipulations of the in-plane lies between the thickness coordinaesz, and z=z.,,, such
sults by post-processing the solutiofl3,14,31,32 Post- thatz;=—h/2 andz,,;=h/2.
processing techniques are generally simple and often efficientThe first-order shear deformation theory can be obtained intro-
Within finite element formulation the use of these techniques @icing suitable assumptions on both the strain and the stress fields
not always straightforward. In fact, the determination of the shedefined in the three-dimensional continuous bdelyas empha-
stresses from equilibrium equations requires the computation ©fed in[34] for the case of homogeneous plates. In fact, the
the in-plane stres&esultant axial forces and bending moments=SDT for laminated plates is based on the following well-known
derivatives. This can be accomplished developing mixed formulassumptions]35:
tions, or displacement-based laminate finite elements character- . L
ized by high-degree polynomial interpolation functiof&s]. The 1. The thr_ough-the-thlckness transverse normal stress is nil,
stress derivatives can be also computed performing regularizatior& e, ‘.’ZZ_O.' . .
of the extensional and flexural strafi4]. The so-called extended . Straight "T‘es perpendicular to the midplane cannot be
two-dimensional method presented by Rolfes ef2®] does not stretched, i.e.¢,,=0. . . .
requires the computation of the stress derivatives; in fact, the as-3' Straight lines _perp_endlcular to the midplane remain straight
sumption of neglecting the membrane forces and of considering after deformation, i.e,, ;= &, ,=0.
the presence of two simultaneous cylindrical bending simplify the pisplacement Field. The kinematics is restrained to satisfy
laminate equations, so that the bending moment derivatives @@ following conditions:
equal to the resultant shear stresses.

Furthermore, it can be emphasized that the FSDT allows to €,,=0 &1,,=89,,=0 2
e e et T o o el eas (0 the cassicl representaton orn o the disiace-
determined using the FSDT, layerwise or zig-zig theories can H?eent field:

adopted in these zone to investigate on the possible delamination S(X1,X2,2) =U(Xq,Xp) + Ze(X1 ,X5)
and failure.
Aim of the present paper is the development of suitable and Sy(X1,X2,2) =W(X1,Xz) 3)

viable laminate models based on the equivalent single lay\?/bere
theory. In particular, refined FSDT models, based on new partial

mixed formulations, are developed, without introducing any sim- S; ug ©1
plification on the laminate problem. 5= s, “u, e, (4)
The following features characterize the proposed approach: ) )
with u and ¢ the vectors of the midplane membrane displace-
* It does not need shear correction factors. ments and rotations, respectively.
« It does not need to post-process the in-plane solution to get =~ ) )
out-of-plane shear stresses. Strain Field. Denoting bye;; the typical component of the
« It may represent the basis for the development of new agdfain tensor, the in-plane strain vector {1, &5, 2615} ", asso-
efficient laminate finite elements. ciated to the displacement representati®y is written as
The proposed approach is based on a variational formulation e=etzk (%)

that considers the out-of-plane shear stresses as primarily Vglkere the membrane strain vecmand the curvature strain vec-
ables of the problem. A new approach is proposed; in fact, thg; ,. 5re given by

shear stress profile introduced in the partial mixed functional is

obtained considering new independent variables or it is deduced r o 7

from the three-dimensional local equilibrium equations. In fact, (9_)(1 0

the explicit expression of the shear stresses is obtained by inte-

grating the first two equilibrium equations with respect to the —L —L L=| o 9 6
thickness direction. Thus, the shear stresses are expressed as func- e=tu k=Le B Xy |- ©)
tions of the in-plane stresses, which can be written as functions

either of the in-plane strains or of the displacement and rotation 79

fields. Hence, several formulations are obtained. In order to assess L dXo 09Xy

the performances of the proposed models, analytical solu_tions e in-plane strain vectoe is a linear function of the thickness
determined for the proposed models. It can be emphasized tEBBrdinatez

a_nalytlcal solutions are available only for special cases; in fa(:t,.l.he out-of-plane strain field vectgr={2¢,, 2¢,, 7 is obtained

simply supported rectangular cross-ply and angle-ply laminat g

are considered within the paper. The solutions computed for tl

proposed models are compared with the exact three-dimensional y=VwW+ ¢ 7

solution, [33], with other classical laminate analytical solutions, - .

[2], and with finite element result§13]. where the symboV indicates the gradient operator.

_In the following the subscript comma indicates the partial de- stress Field. The in-plane stresses within each lamina of the

rivative f ,= df/dx, andf ,=df/9z. composite laminate are computed using the constitutive relation-
ships. In particular, it is assumed that the bddyis obtained
assembling in a staking sequence orthotropic layers, wtld

2 First-Order Shear Deformation Theory (FSDT) representing a plane of material symmetry. Thus, denoting;py

Laminate Model the typical component of the stress tensor, the in-plane stress vec-

— k k kAT H H B
A laminate plateQ refers to a flat body, with constant thicknesd©" o*={o1; 03, 013" for thekth lamina is given by
h: o¥=Cke=CKe+zK) (8)

where C¥ is the so-called reduced in-plane constitutive elastic

h h
- 3 - — 2
0=10ax2.2)eR /ZE( 2’ 2) (X1 %) € ACR ] () matrix associated to thth lamina. Note thaC* is derived from
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the three-dimensional constitutive matrix, enforcing the conditio® Variational Formulation
1, i.e.,0,,=0, [34]. Since each lamina of the laminate presents
different elastic properties, the in-plane stress veetds a dis-
continuous piecewise linear function of the coordinate

The out-of-plane shear stress veci={6%, 65,}7 can be H(u,w,¢.e K 7,0,7=H"(U ¢ 6K o) +H W, 7,7 — oy
evaluated through constitutive equation as (23)

A mixed functional for the three-dimensional laminate-like
body () is now considered:

#=Qky (9) where H™ is a Hu-Washizu functional accounting for the
K ~ . ~ membrane-bending termd&ii® is a Prange-Hellinger-Reissner
whereQ, ;= x,5Qqp With a,5=1,2. Note thaQ,, ; are the com- fynctional accounting for the transverse shear termslaggac-
ponents of the shear elastic matrix of tké lamina andy,s are  counts for the boundary conditions and loading forces.
the shear correction factors. As it is well known, the transverse|n particular, the membrane-bending function#® and the
shear stress vector computed by form{@ais absolutely unsatis- (4nsverse shear functiondF are written as
factory; in fact, formula(9) leads to a transverse shear stress field
which is not equilibrated at the interfaces of adjacent laminae and 1
it does not satisfy the boundary conditions on the top and on the H™(U,¢.e.x,0)= fj (e+zk)"C(e+zw)dv
bottom of the laminate. @
A satisfactory field for the out-of-plane shear stress veetor
={7%, 5,17 can be recovered using the equilibrium equations; in +f [(Lu—e)+z(Le—x)]"odv (14)
the following no body forces and no tangential surface forces on e
the top and bottom of the laminate are considered; thus, the equi-

L ; . 1
librium equations give HS(w, ¢, T):J’ (VW+ @) T7dv — EJ 7Ty (15)
Q Q
z
== j, h/ZLT(rdg, (10)  whereT*=(Q¥) ! is the shear compliance matrix of tkth layer.
Performing the integration along the thickness coordinate, the
i.e., in components membrane-bending mixed functiondld) takes the form

2 5 1
TQZ:—J' (Cor1t Oup)ds  with a=12.  (11) H"‘b(u,so,e,x,N,M):Ef (e'Ae+2e"Br+ k'Dr)dA
—hi2 A

Note that, according to formula11), it implicitly results T AT
7(—h/2)=0; the further boundary conditiom(h/2)=0 has also + A{[(Lu) el'N+[(Le)~ k] M}dA.
to be satisfied.

Once the shear stresses in the laminate thickness are deter- (16)

mined, the transverse normal stress, which is very important f?ﬁe matricesh, B, andD represent the membrane, the membrane-

f)ténding coupling and the bending elastic stiffness matricesnof a

processing method, i.e., by integrating with respect tbe third layer laminate, respectively, defined by equations

equilibrium equation:

n
z — k _
Oz~ _f hIZ( T1z1F T2z 2)dS. (12) A_|Zl a1~ 20 (17)

It can be emphasized that the in-plane strain compori{gntse .

1 2 2
linear functions of the thickness coordinate, so that the in-plane B= Ekzl CX(zk1—20)
stresses8) are piecewise linear functions afAs a consequence,
the transverse shear stresses computed by the equilibriufi®&g. 10
are piecewise quadratic functions. Since the piecewise quadratic D= _2 Ck(zﬁﬂfzﬁ), (19)
shear stress profiles computed by Et)) are widely recognized 31
as the best transverse shear stresses evaluation, within the F
model, it can be assumed as basis for the model construction
condition that the through-the-thickness shear stressgsare

(18)

ﬂ)g-lr-eover, the resultant membrane force and bending moment
vectors,N andM, are defined as

continuous piecewise quadratic functions of teoordinate. h/2 hi2
A classical problem arising in conjunction with the use of the N= odz M :f zodz (20)
FSDT is the determination of the shear factgks, x2, andyxi —hi2 —hi2

. . . k . T 6
appearing in the matriQ” of Eq. .(9)' Denoting bye” and£” the  gecqyse of the constitutive Eq8), taking into account the defi-
complementary shear energies in the thickness obtained considet- ; .

. i : ) ions (17), (18), and(19), it results:

ing the = and @ shear profiles, respectively, characterized by the

same resultant shear stress, the shear correction factors are deter- N=Ae+Bx M=Be+D«k. (21)
mined enforcings™= &Y. The exact values ofq1, x22, andy;» . . . .
can be evaluated analytically only for special cases. In particular,H€nce. the mixed functiondl3) for the laminate can be writ-
Whitney[9] derived an analytical formula of the shear correctioff" In terms of the introduced resultant forces and bending mo-
factor for the case of cross-ply laminates in cylindrical bendingn€nts as

For a more general case, it is possible to evaluate the shear cor-
rection factors developing an iterative procedure. This can be
based on the determination of the displacement solution, of in- FHIW,0,7,7) — oy (22)
plane stresses computation via constitutive equations, of the _ _ _
equilibrated shear stresses, of the complementary shear energiés full displacement formulation of the membrane-bending
and, finally, of new shear correction factors which are adopted fionctional H™? is recovered, implicitly satisfying the resultant
compute a new solution, and so ¢a3]. constitutive laws21) and the compatibility Eq96):

1

H(u,w,e¢.ex7NM,7)=Hmu,¢,exN,M)
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£m™(u )=E Lu)TALU +2(Lu) "BLe+(Le) 'DLe]dA 0=9,H® _ | (vwr @ Tomdo— X | FTom
=5 A[( u) ALu+2(Lu) BLeo+(L¢) DLe]dA. AW, ,7) Q( w+ @) v 5 Qr v
(23) (28)

It can be emphasized that different laminate models can be., T*7*=Vw+¢; thus, Eq.(28) represents the complementary
recovered depending on the expression considered for ®@Nstitutive equation written in variational form. Because of the
through-the-thickness shear stress. In particular, two classesdisilacement representation for(8) for the FSDT, the second
models are herein considered: term of Eq.(28) is constant in the thickness, so that the shear

) ) ) .. stress vectorr is enforced to be piecewise constant in the thick-
e The shear stress profile are approximated introducing indgass. When the stresss represented by formulk®4), the varia-
pendent variables. _ _ tional Eq. (28) enforces the constitutive law in approximated
(i‘()rm; enlarging the space of the shear parameﬁers,tg A
i.e., increasing the number of independent parameters defining the

In the following, four variational formulations of the laminatestress given by formula(24), the constitutive Eq(28) tends to
problem are derived, considering different representation forms/eg enforced in a st_ronge_r manner, so that the §hear st_ress profile
the out-of-plane shear stress vector. tends to become piecewise constant in the laminate thickness.

plane strains and curvatures using the equilibrium EH3.

L 5 Equilibrated Shear Stress
4 Independent Approximation of the Shear Stresses a _

The first refined model, denoted in the following as RM1, is, >+ Shear tSéres; Ct?]mputa_llt_lgr). Thé &osjt-_of-planet_ shear
derived considering independent approximations of the shedfeSSm. computed using the equilibrium E40), is a continuous
stresses. In fact, the shear stress profile is represented as a gewise quadratic function of the th!ckn_ess_ coordinate; thus, the
tinuous piecewise quadratic function in the thickness, satisfyilgnsverse shear stressat thekth lamina is given by

the boundary conditions. Hence, within tkih layer, it is assumed z
a*(z):—f LTo*ds+ 7% (29)
Zi1—Z z—z z
Ft L =T g —2)(2-2)  (24) _ ‘
Z+1— Z Zg+1— Z where 7 is the stress evaluated 2z, :

with t3=t]"*=0. In the formula(24) t& represents the shear stress ac
vector at the interface between the lay&rs1 andk, while t 5= - f h/2L ods. (30)
gives the curvature profile of the shear stresg&timlayer. -

Introducing the representation formu(24) in the transverse Substituting the expressidi8) into the formula(30) gives

shear energyl5), it applies 2
N = —f LTC(e+sw)ds=—LT(Ake+ BXk) (31)
o= 2 f A [(RAGTEH (RS TE R dA v
k=1 with
1 n k-1 1 k-1
t-3 Lgl [ (RAE™H)THS ™ — (RK4 Tl ™ [ d A AK=Z,1 Ci(z11-2) Bk=§;1 C(Z.,-7). (32

1 n Then, taking into account expressig8$ and(31) and perform-
+— —j > [(ﬁktk)Ttk]dA+J' (Vw ing the integration in the thickness, the out-of-plane shear stfess
2 J4i=1 4 (29) becomes

n 2 1
Z, —Z Z —Z _ k 2y ~k A K Rk
+¢)Tk21 k+; k(tg+tg+litk( e+ 1 %) )dA @25) T(@=-LT|(z-z)Cle+ 5(22=2)Cl| ~LT(A'e+ B')

3
— | T pk k
where =—-L ' (A%(2)e+B(2)K) (33)
( )2 ( )5 where
Zv1— 2k ~i (Zep17 2% S 17 2 .
k=TTk kITTk RKZTTK- AK(z)=(z—z)C*+ Ak
(26) 1
BX(z)= = (22— z2)C*+B¥ (34)
Finally, the mixed functiona{22) takes the form 2 K '
" 2 4n il n Moreover, in order to satisfy the boundary conditieth/2)
HuW, @8N M G, -t 1 1) =O_ exactly, the formuld33) is enhanced by adding a linear term
:Hmb(u,go,e,K,N,M)+I:|S(W,¢,t§,..,tg A ) — T oy which is zero az=—h/2:
1
@7 #(2)=—LT(AY2)e+BX(2) ) +a| 2+ Eh). (35)

The number of the unknowns in the FSDT refined model RM1
depends on the number of layers. Since the transverse shear sfféssvectora is evaluated enforcing the boundary condition:
profile does not depend on the in-plane stresses, the membrane _ T
and bending terms can be written adopting a full displacement 0=7"(h/2)=—L (Ae+Bx)+ah (36)
approach functional, substitutirig™ with £€™° in Eq. (27). where A"(h/2)=A and B"(h/2)=B are the membrane and

The presented approach leads to serious drawbacks. In fact, tiembrane-bending coupling elastic matrices of the laminate de-
stationary condition of the mixed functioné22) with respect to fined by Eqgs.(17) and (18), respectively. Solving Eq(36) with
the shear stressgives respect to the vecta, we obtain
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1 7(z) = —LT[(AKO +zAK D) e+ (BKO) + zBKY 4 72BK(2)) ]
a= LT(Ae+Bk). (37) (39)

where

Substituting expressiof87) into formula(35), the out-of-plane

N 1 1
k(0) — Ak __ k_ k(l)— ok —
shear stress® takes the form A Az C—5A A C—pA (40)

. 1 1 1 1
1 1 k(0)—pk_ — 2¢k_ — k(1) — _ — k(2)_— k
NZ):_LT{ Ak(z)_ﬁ(z+§h)Ae B'O=8~>ZC*->B B B BKP-_C
(41)
‘ 1 1 Next, several refined FSDT laminate formulations, based on the
+|B%(2)— nlzt Eh Blx;. (38)  use of equilibrated shear stresses, are derived.

5.2 Refined Model RM2. The FSDT refined model RM2 is
A suitable form for the expression of the out-of-plane sheateduced substituting the expressi@9) of the transverse shear
stress7*, useful for the next developments, is proposed. In facsiress vector, obtained from the three-dimensional equilibrium
the formula(38) can be rewritten in the following equivalentequations, into the mixed shear functiorta? defined in (15).
form: Thus,

n n
_ 1 T 1 T
He= J > [ET"LTX'“O)eJerLTYk(O)K] LTAKOedA+ [ D) |§TKLTX"<1)e+TkLTYk(1)K] LTAKDedA
Ak=1 Ak=1

1( < 1( < 1( <
o | D [TUTYKOTLTBRO d A+ — | D) [THLTYK D] TLTBMVidA+ = | D [THLTYK 2 k] TLTBK 2 kd A
2 Jai=1 2 Jak=1 2 ) Ak=1

n

+f (VW+ )T, (LTXKOet LTYKO) ) dA (42)
A k=1

where 5.3 Refined Model RM3. A possible disadvantage of the
1 refined model RM2 is represented by the large number of un-
k(0) — _ _ k0) L = (52 _ 52y pk(1) known functions with respect to the classical full displacement
X (21 = 20ATTH 5 (2 s ZA } “43) " formulation. In fact, functionaf45) depends on five displacement
parametersy ,U,,W,¢1,9,), on six midplane strains and curva-
1 1 tures @11,€22,€12,K11,K22,K12) 0N six axial and bending result-
E(ZEH_ZE)AMO)"‘ §(ZE+1_Z§)Ak(1)} ants (N11,N22,N1p,M1q,Mgs,My). ) .
As matter of fact, in the membrane-bending Hu-Washizu func-
tional H™, defined by Eq(16), the resultant stress vectdysand
M can be regarded as the Lagrange multipliers of the constraints
corresponding to the compatibility Eq&). The FSDT refined
model RM3 is obtained implicitly satisfying the compatibility
Egs. (6) in the membrane-bending Hu-Washizu functiosb);
thus, the full displacement membrane-bending functid@a) is
obtained. Moreover, the penalty approach is adopted to enforce
1, 2 k(0), L3 3\ k(1) the constrain{6) in the mixed functional42); in fact, a penalty
5 (Zr 1= 2B+ 5(Z1—Z0B term is added into the governing functional, which results in

XK = —

1
YO =1 (z,,—2)B O+ E(zﬁﬂ—zﬁ)Bk(l)

1
5z Z)B? (44)

Y= _

1
+ Z(zﬁﬂ—z‘k‘)Bk(ﬂ

E(U,W,@,6,K) =EM(U, @)+ H3 (W, ¢,6,K) + A(U,¢,6 k) — gy
(46)

1 1
YK = — |2 (21— 2B+ 2 (2~ Z0BY

. where the penalty term is defined by

1
EECARLL
The mixed functional22) for the model RM2 takes the form

H(u,w,¢,€,6,N,M)=H"(uU, 0,8 1,N,M) + H3(W, 0,8 1) — [ o
(u,w,¢,€,,,N,M) (u, 0,8 1,N,M)+HS(W, ¢, K) (4;_’) A:%}JA[(Lu—e)T(Lu—e)+(L¢—K)T(L¢>—K)]dA @7)

The number of the unknowns in the FSDT refined RM2 model
does not depend on the number of layers; this fact represents an
advantageous feature of the proposed RM2 formulation with re-
spect to the RM1 model. with » the penalty parameter.
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According the penalty method, the resultant stresses are deb.4 Refined Model RM4. The refined model RM4 is based
duced as on the full displacement-based variational formulation. In fact, it
1 1 is obtained enforcing the strain displacement Efsin the shear
N= ;(LU -6 M= P (Le—x) (48) functional (42). Thus, the functionaHs-becomes

n n

- 1 1

As= | > [E[TkLTXk<°)Lu]T+[TkLTYk(O)an]T]LTAk<°)LudA+ > [E[TkLTXk<1)Lu]T+[TkLTYk(l)Lga]T LTA*DLudA
Ak=1 Ak=1

1 " 1 n
+ > 2 [TkLTYk(O)L¢]TLTBk(0)L¢dA+ 5 f 2 [TkLTYk(l)L¢]TLTBk(1)L¢dA
Ak=1

Ak=1
l n n
+3 Lkzl [TKLTYKRL ] TLTBKAL pd A+ L(Vw+ ¢)Tk§_)l (LTXKOLY + LTYKOL g)dA. (49)

Hence, the full displacement functional governing the laminatgherew represents the transversal displacement occuring in the
problem is center of the laminate, i.evo=w(a/2,a/2).
o b 5 s It is apparent the effectiveness of the refined models RM2,
E(u,w, @) =E™(uU, @)+ H¥(W,u,¢@) —IToy. (50) RM3, and RM4. In fact, RM2, RM3, and RM4 results are in
The recovered potential energy functior(&0) appears very perfect agreement with the FSR{, and 3D_AS solutions; in
appealing since it presents only five unknown functions, ig,, ©Other words, the RM2, RM3, and RM4 approaches are able to
Uy, W, @1, andg,. On the other hand, second-order derivative&ecover the FSDYy model without the use of_ the shear correc-
of the in-plane displacement and the rotation vectorsu.ande, tion factors. Moreover, the RMllappears satlsfacFory for the ho-
appear in the functionaf. From a numerical point of view, the mogeneous plate anq for the antisymmeftit90] laminate, wh|_Ie
presence of the second-order derivatives of the unknown functidh absolutely unsatisfactory when the symme{i¢90/0] lami-
in the governing functional could represent a drawback. In fact, fipte is conS|dere_d. . )
the perspective of developing suitable finite laminate elements'n Fig- 1 the dimensionless shear stress profilg/p, for the

based on refined FSDT theories, a greater continuity of the int&ieMogeneous plate in cylindrical bending is reported. The results
polation functions is required. 9 y obtained by the four proposed refined models, i.e., RM1, RM2,

RM3, and RM4, are compared with the shear stress derived by the
analytical three-dimensional solution. It can be noted the perfect

6 Numerical Applications agreement bgtween al! the computed solutions with the exact
three-dimensional solution.

With the aim of verifying the accuracy of the proposed FSDT Then, the homogeneous plate in cylindrical bending is studied
refined models, some numerical calculations are developed. Rénsidering fictitious staking sequences of one |dyr three
sults are carried out for homogeneous plates as well as for coggual layerg0/0/0] and ten equal layef®/0/0/0/0/0/0/0/0/Q Re-
posite laminates. In particular, square plates, characterized by #ts in terms of dimensionless shear stress prafilép, in the
in-plane dimensiora and subjected to transversal sinusoidal loacslate thickness are reported in Fig. 2. It can be noted that the
ing, are considered. The laminates have the side to thickness r&ig2, RM3 and RM4 proposed models lead all to the same solu-
p=h/a=0.10. The following elastic properties are introduced ifion in perfect agreement with the exact three-dimensional solu-

the computations: tion. On the contrary, the RM1 model gives different solutions
E depending on the number of layers considered for the fictitious
L Gir Grr ; : : R
— =25 1=0.25 —=05—=0.2 (51) staking sequence. In particular, for=10 the shear stress is al
Er Er Er most constant in the core of the plate. In fact, increasing the num-

which correspond to a strongly orthotropic graphite-epoxy matBer of layers, i.e., increasing the number of independent functions
rial. The subscripts and+ indicate the longitudinal and transver-approximating the shear stresses, the constitutive@dends to
sal principal material directions. be enforced. Thus, enlarging the space of the shear parameters

o . - tﬁ,..,tg,tl,..,t” the shear stress profile tends to become constant
6.1 Cylindrical Bending. Initially, homogeneous and cross-¢o; the homogeneous plate.

ply laminated plates in cylindrical bending, subjected to the sinu-

soidal loadp = pg sin(ax) with «= 7/a, are studied. In particular,

antisymmetric[0/90] and symmetrid0/90/0] laminates are con-

sidered. In Table 1, the results obtained using the refined modgl$ie 1 Dimensionless maximum displacement  w,,,, defined
are put in comparison with the exact three-dimensional analytiag} formula (52) for homogeneous plate and for ~ [0/90] and [0/90/
solution (3D_AS) obtained by Pagari®3] and with those recov- 0] composite laminates in cylindrical bending

ered through the classical Mindlin-Reissner the@®sDT). In

particular, FSDT solutions are obtained considering the shear c@frax Homogeneous [0/90] [0/90/0)
rector factory equal to x,=5/6 and the exact value of shearFspry, 0.7347060 29662221 0.8136198
corrector factor proposed by Whitney,, [8]. Results are re- FSDTyy 0.7347060 2.9713422 0.9443031
ported in terms of the dimensionless maximum displacemgpt RM1 0.7347060 2.9482925 0.7902380
defined as RM2 0.7347060 2.9722354 0.9443031
RM3 0.7347060 2.9722354 0.9443031
E-w RM4 0.7347033 2.9721543 0.9443031
_ T7c 3D_AS 0.7316710 2.9502480 0.9306170

W= 1005 (52)
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Fig. 1 Dimensionless shear stress  7,,/pg at x;=0 for homo-

; P o B Fig. 3 Dimensionless shear stress 7,,/p, at x;=0 for the
gﬁfr;gﬁtss%iﬁ%gscylmdncal bending; comparison between the [0/90] laminate in cylindrical bending; comparison between the

different solutions

In Figs. 3 and 4 the dimensionless shear stressef, are
plotted for the[0/90] and[0/90/Q] laminates, respectively. Again it In Table 2 the dimensionless maximum displacenveqj, de-
can be noted the good agreement between the solutions obtaifieeld by formula(52) is reported; in particular, results are ob-
using the RM2, RM3, and RM4 models and the three-dimensiortained, considering
analytical solution. On the contrary, the RM1 model, based on the . . . . .
assumption of independent approximation of the shear stresses, me ]Elafs'cﬁl FSI?T e}nf}lyt'c?:‘lESOIUt'o.?hW'j‘f:XO_5/6’
leads to unsatisfactory solution, since the profile appears abso- € finite element solution (FEM) with x= xo,
lutely inadequate.

6.2 Simply Supported Laminates 0.05
Cross-Ply Laminates. Cross-ply laminates subjected to the ., i \
sinusoidal loadp=pg sin(ex)sin(ay) with a=/a, are consid- . ol ~
ered. The following SS1 boundary conditions are adopted: 0.03 |~ 3D solution For
RM1 e —
U2:W:(P2:O N11: |\/|11:O at X1:O and X1:a 0.02 * * RM2-RM3-RM4 ¥ ¥
/ %
U1:W: (,01:0 N22:M22:0 at X2:0 and X2:a. 0.01 i i
Results are computed for homogeneous plate and0i®0] and / ¥
[0/90/Q] laminates. N \ ¥
0.01 *
N i
0.05 002 * \
A i e - \Ti\——v'\v_ﬁ 003 o
0.04 e S R . * »
ol ;\7} T~ 0.04 ** -
‘ Rty 3D solution ‘\; L U N S I S S
0.02| —— RM13layers v > 0.05 1 2 3 4 5 6
- 5
——7  RM1 10 layers <4 % )
0.01 # RM2-RM3-RM4 3-10 layers| ™Y N 74/Po
4 N
© ¥ j Fig. 4 Dimensionless shear stress  7,,/p, at x;=0 for the
x 0 Y i [0/90] laminate in cylindrical bending; comparison between the
0.01 g | P different solutions
’ ¥ F
-0.02 <<L ¥ Table 2 Dimensionless maximum displacement Wmax defined
) 3 *\*’\ by formula (52) for homogeneous plate and for  [0/90] and [0/90/
-0.03 ;*r'j 0] cross-ply laminates
0.04 o S B Winax Homogeneous [0/90] [0/90/Q
¥ T ____v—ﬁ
0,05 baszzzz e FSDTy, 0.6382997 1.237270 0.669302
’ 0.5 1 15 2 2.5 3 3.5 4 4.5 5 FEMxq 0.63834 1.2373 0.66930
T, Jp FEMy 0.63834 1.2319 0.76377
1270 RM1 0.6382997 - -

. . . RM2 0.6382997 1.231817 0.763779
Fig. 2 Dimensionless shear stress  7,,/p, at x;=0 for homo- RM3 0.6382997 1.231817 0.763779
geneous plate in cylindrical bending; comparison between the RM4 0.6382997 1.231817 0.763779
different solutions computed considering one, three, and ten 3D 0.6338085 1.224799 0.751425
equal layers
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Fig. 5 Dimensionless shear stress  7,,/p, for the [0/90] lami-  Fig. 7 Dimensionless shear stress  7;,/p, for the [0/90/0] lami-
nate computed at x;=0, x,=a/2; comparison with the three- nate computed at x;=0, x,=a/2; comparison with the three-

dimensional analytical solution dimensional analytical solution

« the finite element solutiofFEMy) with exact value of the _ _ _
shear correction factor computed by the iterative procedureAngle-Ply Laminate. The antisymmetrid —45/45 angle-ply

proposed iM13], laminate subjected to the sinusoidal lope- pg sin(@x)sin(ay)
« the RM1 analytical solution only for the homogeneous plat¥ith a=m/a, is considered. The following SS2 boundary condi-
« the RM2, RM3, and RM4 analytical solutions, and tions are adopted:

* the exact three-dimensional solution 3D-AS. U=w=,=0 N;p=M;;=0 atx;=0 and x;=a

In Figs. 5 and 6 the dimensionless shear stress prafilg®, o _ . - _
and 7,,/p, for the [0/90] laminate are plotted, respectively. 92~ W= ¢1=0 Np=Mz=0 atx,=0 and x;=a.
Analogously, in Figs. 7 and 8 the shear stress profiles are plottedn Table 3 the dimensionless maximum displacenvepf, de-
for the[0/90/0] laminate. It can be noted that the proposed modefimed by formula(52) is reported; in particular, results are ob-
are able to approximate very accurately the exact threined, considering
dimensional solution for both the considered laminations. . . . .

Finally, in Fig. 9 the dimensionless displacement,, defined  ° the classical FSDT analytical solution wifh=x, and
by formula(52), computed for thé0/90/0] lamination, is plotted  ° the RM2, RM3, and RM4 analytical solutions.

versus the ratip="h/a. In particular, the RM3 solution is com- |t can be noted that the RM2, RM3, and RM4 models give all
pared with three dimensions with the FSRyT with the FSDTy  the same results which differ from the FSDT solution obtained
and with the classical laminate thed(@LT) solutions. It can be adopting the shear correction factpr5/6. Finally, in Fig. 10 the

emphasized the good accordance between the RM3 and the ajirsar stress profile;,/p, for the angle-ply laminate is plotted.
lytical three-dimensional solutions for a wide range of the ratio
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Fig. 6 Dimensionless shear stress  7,,/p, for the [0/90] lami- Fig. 8 Dimensionless shear stress  7,,/p, for the [0/90/0] lami-
nate computed at x,=a/2, x,=0; comparison with the three- nate computed at x;=a/2, x,=0; comparison with the three-
dimensional analytical solution dimensional analytical solution
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Fig. 9 Dimensionless displacement
to side ratio

Wmax Versus the thickness

7 Conclusions

needs the use of a penalty parameter, which is not always simple
to set; on the other hand, the RM4 requires the use of smoother
approximation functions in the finite element formulation, since
second-order derivatives appear in the governing functional.

The proposed model does not suffer of any limitation about the
number of layers defining the stacking sequence and of the ply
angles; more complex situations can be investigated, including
quasi-isotropic laminates. More complex cases can be studied de-
veloping suitable finite elements based on the proposed formula-
tions. In fact, the presented mixed principles, in particular the
RM2 model, are the bases for the development of new and per-
forming finite elements. One of the major problems in developing
mixed laminate finite elements, is the definition of the approxima-
tion functions used for the midplane strains and curvatures in
order to verify the stability requirement, related to the LBB con-
dition. Finally, full displacement finite elements can be recovered
from the refined model RM2 performing static condensation of
strain and stress variables.
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Analysis of Laminated Anisotropic
c-u.un | CGylindrical Shell by Chebyshev
M4 Jen' ¥ Collocation Method

Department of I\/Iechaqical a”d. Elecltro- The governing equations of a laminated anisotropic cylindrical shell problem are a system
Mechanical Engineering, of partial differential equations. The boundary conditions will complicate the problem.
- National Sun Yat-Sen University, Thus, it is hard to handle the governing equations in the form of functions of independent
Kaohsiung, Taiwan 80424, Republic of China variables. Herein, Chebyshev collocation method is proposed to achieve the exact solution

theoretically of such a difficult problem. Finally, two examples with numerical results are
presented. The preciseness and efficiency of the proposed Chebyshev collocation method
for laminated anisotropic shell problem are highlightd@Ol: 10.1115/1.1574059

Introduction wheren is a non-negative integer. By the trigonometric relation,

Shells have been widely applied to many engineering structu}QFre exists

elements, e.g., pressure vessels, submarine hulls, ship hulls, and cog(n+1)6#)+cog(n—1)0)=2 cognd), 2
fuselages of airplanes, etc. From the survey of literature, plenty of
research is published in the field of shell problems. However, 88
for the work in this paper, the specified references on thin shells T, (x)=2xT,(X)=T,_1(X), To(X)=1, T;(X)=x. (3)
are merely pointed out. Kraj4] derived the governing equations ) .
of isotropic thin shell problems. Ambartsumyg#] developed the From Eq.(3) the first few Chebyshev polynomials are represented

theory and dealt with the problems about some anisotropic sh&fi

d the recurrence equations can be generated as

problems. Flgge[3] presented the solutions for laminated aniso- Ty(x)=2x2—1
tropic shells. He assumed the solutions as doubly infinite trigono-
metric series which must satisfy the boundary conditions. Then, T4(x)=4x3—3x

substituting the solutions back to the governing equations, the - ey 8x?4 1
unknown coefficients could be resolved. The solutions obtained a(x)=8x X
by the method proposed by Fgge are functions of two indepen- Ts(X) = 16x%— 20x3+ 5x (4)
dent variables which are much more applicable than any other
methods. In spite of the abovementioned advantages, the method ... ... ...
will be blocked in the cases of the complicated material properties 1 \
and boundary conditions. Chaudh(i4] proposed a method to T.(X)= —[(Zx)”—{z(n_l) _(n—Z)
generate the exact solutions for arbitrarily laminated anisotropic " 2 1 1
cylindrical shell. Nevertheless, the method proposed by N _3
Chaudhuri was limited to the field of tube, and it did not work for N 2(” ),(” )
the part of cylindrical shell. All the theories mentioned above are 2 2
based on Kirchhoff-Love'$5] hypotheses. To overcome the dis- n—1 (h—1)!
1 ):m
n—z) _ (n=2)!
2 | (n—2-2)121"

advantages as discussed in the literature, Chebyshev collocation where
Alternatively,x" can be expressed in Chebyshev polynomials as

(2x)“*4—-~-}, n=1,

methods[6—8], associated with boundary conditions are used to
achieve a more general form of the laminated anisotropic cylin-
drical shell problem. (

n—z)_ (n—2)!
Tl e yEy

etc.

Chebyshev Polynominals

n
The Chebyhsev polynominal is named after the Russian math- T”(XH(1)1-”*2()()Jr
ematician P. F. Chebyshe821-1994. Chebyshev polynomials . .
are known as a kind of orthogonal polynomials that can be applid@us: the expansion for™T(x) is
to numerical analysis. For solving systems of partial differential 13 m
equations in this paper, some basic formulas are listed as follows. XM (X) = _mz ( . )Tn—m+2i(x)- (6)
The nth-order Chebyshev polynomidl], is expressed as 2" M

Xn

n
=51 Z)Tn74(X)+“'} (%)

T,(x)=cognd), x=cog6), -—1=x=<I1, (1) Using the weighting function (£x?) "2 the orthogonality con-
dition of Chebyshev polynomials can be presented as
1To whom correspondence should be addressed. 0 m=n

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- 1
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septem- 1—x2)~ 1/2-|- )T (X)dx=
ber 7, 2000; final revision, June 5, 2001. Associate Editor: M. Ortiz. Discussion on 71( ) m( ) ”( )
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart-
ment of Mechanical and Environmental Engineering University of California—Santa T, m=n=0
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after ' . .
final publication of the paper itself in the ASMEDORNAL OF APPLIED MECHAN- KTOW: f(x) defined by the Chebyshev series ferl<x<1 is

ICS. given by

m=n+0, (@)

T
2
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1 © whereA, andA, are Lameparameters and expressed as
f(x)=zagTo(x)+ a,Th(x), 8 =
()= 380To(x)+ 2, arTy(x) (®) A E,
where A,= \/E (16)
2 1 o The unit normal vector is given as
an:;f_l(l—x) f(x)Th(x)dx. 9) FIXT,
N(ay,az)= Toxrq’ 17)
In the appreciation of Chebyshev polynomials in the most engi- ) 702
neering problems, any range<y<b can be transformed into the And, the normal curvature is
Chebyshev polynomials’ range 1<x<1. The independent vari- dr-dn
ablex in Egs.(1)—(9) can be replaced by Kn=grar: (18)
e 2 y —b—-a (10) Similarly, the differential change vectadin can be expressed as
b-a b-a - dn=n,da;+nda,. (19)
Formulation for Laminated Anisotropic Cylindrical Substitute Eq912) and(19) into Eq.(18), it generates the normal
Shell curvature
r 2 Y N 2
The strain-displacement relations and equilibrium equations of K :L (day)™+2M (deyday) + N (day) (20)
shell problems can be obtained by the method cited in Réf. n E(da)2+2E (da-das)+ & (d 2’
Please refer t¢1] for further details of implementation. For sim- (day) (dayday) (daz)
plicity, only the final results are listed. where
First of all, the position vector equation of the parametric [:rl.nll
curves of surface can be represented as . T
2M =(r 1-No+r Ny, 21
(g, a0)=filay,ap)i+falay,an)i+faay,ank, (11) (fanzttany )
N = rvz' nyz.

wheref,, f,, andf; are continuous and single-valued functions
of two variable parametera; and a,. The position vectors of In Eq. (21), L, M, and N are called the second fundamenta
curvilinear coordinates are represented in Fig. 1. The differenti@@gnitudes.

changedr in the vectorr is If day;=0 andda;=0, Eq.(20) becomes
dr=r da;+r da,, (12) o 1 L
wherer ;=dr/da;, i=1, 2. Taking the scalar product af with ! R, E’
itself gives the square of magnitude of the differential chatige . (22)
as 1 N
. . . Ky=—=—,
(ds)?=dr-dr= E (da;)?+2F dada,+ G (day)?, (13) R, G
where whereR; and R, are the radii in the directions af; and a5,
. respectively.
E=ryrg, According to Kirchhoff-Love’s first approximation to the theory
. of thin elastic shells[1], there are four postulates as follows)
F=rairs,, (14)  the shell is thin,b) the deflections of the shell are smdt) the

transverse normal stress is negligible, @adgnormals to the ref-
erence surface of the shell remain normal to it and undergo no

In Eqn. (13), E, E, andG are called the first fundamental mag-change in length during deformation. Therefore, the strain-
nitudes. If the parametric curves form an orthogonal net, fhen disPlacement relations in a thin elastic shedl], are given by
=0 and Eq.(13) becomes g1=e5+ 27Ky,

(ds)?=A2(day)?+A3(das)?, (15) £,=89+7K5, (23)

_ .0
Y12= Y12 ZK12,

G =I”2'I"2.

where

1 4u u, dA; w

=Ly 2 Ly

Al &al A]_AZ (9&2 Rl

1 du u; JdA, w

=2y L 2,

A2 0”(12 A1A2 (?al R2

0o _fo 9 2) Ar 9 (U

712 Al (9(11 A2 A2 (9012 Al ’
10B1 B2 A
Ki=——+ —,

Al (9a1 AlAZ (90/2

_ LB, B oA

A2 (9&2 A1A2 [9&1’

Ay d (52)+Ali(,31)

TR dar\ Ay R da | Ay

(24)

K2

Fig. 1 Position vectors of a surface
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Fig. 2 Nomenclature for stress resultants and shear stress
resultants

The quantities of3; andg, in Eq. (24) are the rotations tangential
to the reference surface oriented along the parametric dinesd

a,. They are

(25)

u; 1 aw
l_Rl Al (9&1
u, 1 ow

The following equilibrium equations are derived by Hamilton’s
principle, [1], some terms in the equations are omitted for the

consideration in static case.

(7(';;/32) + a(Nﬁilel) +le%—N2% +A1A2%=O,
'?(2221'6‘2) + (9(';61:1) + NZl% - Nl% +A1A22—22 =0,
D) AR (M Mol no
e M MGkt

AMAr)  I(MoAY) A, A,
+ +My——My—— =0.
(9&1 8&2 M21K9a1 Ml(?(lz Q2A1A2 O

In Eq. (26) the positive directions dfl;, N,, Ni5, N,;, Q;, and
Q, are defined as shown in Fig. 2. Meanwhile, the positive direc-

A\

oo,

o,

Fig. 4 Contour of the cylindrical shell

The natural boundary conditions are as follows.
Along the edge of constani; :

N]_:Nl, or Ulzil,

lezﬂzn or u;=uy, (27a)

V=V, or w=w,

M;=My, or B1=p;.
Along the edge of constani,:

N2=N2, or UZ=U2,

Tu=To, OF U=y,

(27b)
V,=V,, or w=w,

M,= '\72: or ﬁzzﬁzv
where

t
Tnt=Npet ?r:v
(28)
1 oM,

Va=Qu+ A_\t

n, t=1, 2.
e, ! ) )

tions of M;, M,, My, and M,, are defined in Fig. 3. Due to The symbolsh andt denote normal and tangential directions on a
symmetry of stress tensor, i.e4,= 75,, and the characteristics of designated boundary edge.

“thin” shell, N;,=N,; andM ;,=M,, are provided in Eq(26).

~ M21

M12

Fig. 3 Nomenclature for moment resultants

Journal of Applied Mechanics

Now let the position vector of a cylindrical shell problem be
r(ay,a)=ai+Rsin(a,)j+Rcogay)k, (29)

where the definitions oft;, «,, andR are represented in Fig. 4.
Substituting Eq(29) into Egs.(14)—(22) and manipulating the
results provides

Al:]'! AZZR, R]_:OO, R2:R (30)
Substituting Eq(30) into Egs.(25) and(24) to yield

u, 1

Bi=—wq, ,82=E—§W,2, (31)
and
o o 1 w 0 1
€1=Uy;, Szzﬁuz,z"‘ﬁv 712:U2,1+§U1,2:
(32)
1 1 1 2
K1=—Wj31,

Kzzﬁuz,z_ QW,zzn K12:§U2,1_ ﬁWJZ-
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Again, substituting Eq(30) into the last two equations of Eq.
(26), and after rearrangement, we have

1
Q1=My 1+ R M3,
(33)

1
Q2=My, 1+ R My5.

The substitution of Eq¥30), (33) into the first three equations of
Eq. (26) yields the simplified equilibrium equations

1
Ny .+ R N3, =0,
1 1 1
Ny 1+ ﬁNz,z+ R My, 1+ R M,,| =0, (34)
1 N,

Myt R Mo 15+ ®? M3 20— R Un-

Finally, substituting Eqs(30), (33) into Eq. (28) gives

T12=Nyg, To= N21, (35)

2 2
Vi=My + R Miz2, Vi=Moot R

The stress-strain relations for ti¢h layer[10,11] in a lami-
nated anisotropic cylindrical shell are expressed as

M 12,1-

o1 Qu Q2 Qe &9 K1
5 A A 0
020 =| Quz Qz Qg 85 +zy k2 ¢ ¢, (36)
T12 ~ ~ ~ K12
k LQiw Qz Qesl,' ' "%

where
Q1= Q11 0¢ 9+ 2(Q1+ 2Qgg)Sir? 6 O 6+ Q,psint* 6,
Q1= (Qu1+ Qp— 4Qgg)Si? 6 co 6+ Qysin' 6+ cod' 6),
Q2=Qy15iM 6+ 2(Qy,+2Qge)Sin? 6 oS 6+Q,,co8 6,
Q16=(Q11— Q12— 2Qgg)sin 6 COS 6
+(Q12— Qpot+ 2Qgg)Sir® 4 cosé,
Q26=(Q11~ Q12— 2Qgg)Sir® 0 cOSO
+(Q1o— Qo+ 2Qge)sin O cOS 6,
Qo= (Qu1+ Q2o— 2Q1,— 2Qeg)Sir? 0 cog

+ Qgg(sin’ 8+ cos ).

In Eq. (37), 0 is the angle of ply orientatioiithe more precise
definition abouté is described in Ref.10]) and

Ey

1-vyvn

37)

Qu=

viEy . va1E2

Q12

Qo=
1-vivn S 1- VigVor
B

— V1o’

(38)
QZZ 1

Qe6=G12-
The stress and moment resultants are defined as
N1 N 2 oy
Ny f=> f oy ¢ dz (39)
Npp) ¥t Jzcal m,)
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Fig. 5 Geometry of multilayered laminate

Lamina Number

and
M 1 N g1
=> oyt zdz (40)
M 1) P e 1)

wherez, andz,_; are described in Fig. 5.
Substituting Eq(36) into Egs.(39) and (40), respectively, and

rearranging the results, the stress and moment resultants can be

expressed as

[A1n A A By Bi Byl 0
Ns A, Ay, Ay By By B 1
N, 12 22 26 12 22 26 82
N> _ As Az Ass Bis B Begg Yio
My By B Big Din Dip Dgs K1 ’
M
M 2 Bio By By Dip Dy Dog| | X2
12 K12
|Bis B2 Bes Dis Dag Des
(41)
where
A= kZl @,— (2= 2 1)
1 N
Bj=5 2, (Qu)Z—Z0), (42)

|_\

N
52 Dz —2e-1),

i, j=1, 2, 6.

Finally, substituting Eq(32) into Eq. (41), it generates six equa-
tions. For convenience, the results are abbreviated as

1 w

N1=A11U; 1+ A ﬁuz,z"‘ﬁ +--+Byg U21 le):
1

No=AgsUz 1+ Az rY22T R +eo+Bog U21 —W12 :
1 w 1

N1o=Agels 11+ Agg RU22t g/ T *++ Beg RY217 R W12

(43)
1 w 1
1=B1jU1 1+ By rY22T R +--+Dyg RY217 gWaz2).
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Mo=BoU1 11+ Bo

1 w 1 2 . 1
RU22T g| T+ Dag U217 gWaa2|, Tm(a)=Th W(Z%*Xz*xl) ,

(49)
1 w 1 2 ~ 1
M1,=B1gU111 Bog ﬁuz,z+ R +++++Desg RU217 gWa2/- Ta(az)=T, W(ZQZ_YZ_Yl) .
Moreover, the substitution of E¢43) into Eq. (34) yields Equation(49) can be derived by linear transformation in order to
satisfy that the variables in Chebyshev polynomials within the
(AU +---)+£(A Uy jpt)=0 interval[ —1,1]. _ .
L1 R\ 167112 ' Let the Chebyshev-extrema pointgl2], (i.e., also named
. Gauss-Lobatto pointde
Ayt )+ = (Aply 1ot Xo+ Xy Xp—X i
( 161,11 ) R( 1241,12 ) ai: 2 1_ 2 lCO —, i=0, 1;“’ M,
2 2 M
1 1 (50)
+ 5] (BygUg,1at 7))+ 5 (Bl 1ot ++) | =0, (44) - YotYy Yo=Y, A
R R d=—F——-—5—cog |, i=0, ;- N.
(ByjUy 130+ +°) + E(Bleul 1at) For example, if_ a plate is subjected to the transverse tpad
’ R ’ with four edges simply supported, the boundary conditions are
1 1 u;=0.(a;=const)
+ E(Blzul,lzfr‘ ) — ﬁ(A12u1,1+- “)=0p. Group 1: [uizo.(a;const.) (51a)
To solve the system of partial differential equations of &), ~Ju;=0,(a;=const)
the Chebyshev collocation method is used as discussed in the next Group 2: u,=0.a,=const) (51b)
section.
G 3. w=0, M;=0.(a;=const) 51c
roup s w=0, M,=0.(ay=const)’ (51c)
Chebyshev Collocation Method By the collocation method13], the substitution of Eq(48)
Consider a rectangular plate with the dimensidng ,X,] into Eq. (44) and Eqs(51ab.c) yields
X[Y41,Y,] and it implies thatX;<a;<X, and Y;<a,<Y,. N
First of all, separate the equilibrium Eq44) and boundary con- f2)) A T =
ditions (27a), (27b) into three groups as follows: Group 1: 2: 2 {amd AwaTr (@) Tn(ay) +--]
Group 1: Eq.(44.1 and
_ (1) A \FL)
_ + ) [ R
N,=N;, or u;=u;, (on the edge of constant,) (45a) Bmrl Azl (&) Tr (@) ]
_ _ 20 TBT@(a) TG ) 4T =
T21=Tp, or u;=uy, (onthe edge of constani,). Crrl BagTm (@) T (@) +--]}=0, (522)

(45b) . .
i=1,2;--,M—1, j=1,2;-- N—-1
Group 2: Eq.(44.2 and

— N
T,,=Tq,, OF U,=U,, (onthe edge of constant,) - - .
12= 12 2=Uy, ( g 1 (46a) U1(X1,a’j)—2 Z A, m(x (aj)=0, j=0,1;--,N

N2=W2, or u,=u,, (onthe edge of constant,). (520)
(46b) MoN
Group 3: Eq.(44.3 and ul<x2,aj>=2 E T m(X2)Tn(@)=0, j=0,1;--,N
_ m=0 n=0
V,=V,, or w=w,
vt — (onthe edge of constani), (52c)
M;=My, or B1=p4; vooN
(473) A A .
_ B U@ Y= 2 3 amT(@)To(Y) =0, i=1;- M~1
Va=Vz, OF W=W, (on the edge of constan,) e (52d)
M,=M,;, or B,=p8; 2
(470) MoN
Let the solutions to the system of partial differential equations beu,(&;,Y,)= 2 2 amn m(aI To(Y,)=0, i=1,-- ,M—1
M N m=0n=0
(52¢)
Up(ag, @)= 2 2 amn m(al)T (az),
m=0 n=0 N
L Group 2: 2 2, {amd AsgT (@) To(@) +-+]
Up(ay, @)= 2 2, bnTm(@n)To(ay), (48) -on=
m=0n=0 +by A f(l)(“_)’f(l)(~_)+...]
MoN mnLA2e!l m @) 1y (@
War,a2)= 2, 20 Cnl (@) To(a2), o= 2Cmd BesT (@) T (@) +---1} =0,
m=0 n=
where i=12;--,M—-1, j=1,2;-- ,N—-1 (53)

Journal of Applied Mechanics MAY 2003, Vol. 70 / 395



N
U2<X1’?v;>—2: 2 Dl (X Tol@)) =0, j=0,1

;e 'N
(53)
M N
u2<x2,a,»>=mZ:0 20 BnTm(X2) Tn(@)=0, j=0,1;-,N
(53)
N
a| rYl)_Z 2 mn-’l\—m(&i)’:rn(Yl):Oy i=1-- ,M—1
(53)
M
2(&,Y2)= D) > bl (@) Ta(Y2)=0, i=1;+ M—1
m=0 n=0
(53)
M N
Group 3: >, > {and B T&(@)To(@)+ ]
m=0 n=0
+ Dl BoT (@) T (@) +++]
o= 20md DagTi (&) T(@) +-+- 1} =ap,
i=2,3;- ,M—2, j=2,3;-- N—2 (54a)
M N
w(xl,aj>=mE:O 20 T m(X0) Ta(@)=0, j=0,1;+- N
(54b)
M N
WXz, @)= 2 ) CnT (X)) To(®) =0, j=0.1;-+ N
(54c)
M N
W(&,Y) =2, > Conlm(@)To(Y1)=0, i=1;- ,M—1
m=0 n=0
(54d)
M N
1@ Y2)= 2 2 Tl @) To(¥2) =0, i=1; M—1
(54¢)
M N
M1<x1,aj>=mE:0 EO {amd B1aT (X)) To(@) ++ ]
b d BT m(X) TG +- -]
+eo =20 DygT (X ) TH(GE) ++ 11 =0,
j=1,2;-- \N—1 (54f)
<x2,a>—2 2 {amd B1aTO(Xo) To(@) ++ ]
b d BT (X)) TG +- -]
— 26 D1eTP(X)TH (@) ++ 11 =0,
j=1.2; ,N—1 (54)
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Mo(&;,Y1)= 2 E{amn[BlzT ) To(Yo)+e ]

m=0 n=

+ D BooTm( @) TE(Y 1)+
o= 20 DogTi (@) T
i=2,3-- ,N-2

(Yy)+---1}=0,

(54n)

Mo(&;,Y2)= E E{amr[BuT(”(a.)T (Yo)+:]

m=0 n=
+0mA Bos T (@) TS (Vo) +-+-]
o= 2emd DagT W (@) T(Yo) +++ 11 =0,

i=2,3-- N-2. (54)

Both of the numbers of the total equations in three groups and all
the unknown constantsaf,,, byn, Cmn) are 3M+1)(N+1).
Through this, the unique solution of the unknown constaag, (

bmn, Cmn) Can be received. Other problems with any different
boundary conditions can be solved similarly via the method men-
tioned above.

Examples

Case 1

Consider a four-layered cross-ply laminated clamped composite
cylindrical shell which is subjected to a uniformly distributed load
g,= 1000 Pa. The contour of the cylindrical shell is represented in
Fig. 4.

Material: graphite/epoxy T300/5208.

Mechanical properties of a lamina with unidirectional fibers

E,=181 GPa, E,=10.3 GPa,

G,,=7.17 GPa, v,=0.28. (55)
Thickness of each laye®.125 mm.
Stacking sequencg0/90/90/0.
Dimension [0,4]mX[0,m/6]radian, i.e., Bca;<4 and C<a,

< 7l6.

Radius of the cylindrical shelR=5 m.

For clamped edges, the boundary conditions are as follows:
For a;=0 anda;=4

U]_:Uz:W:Bl:O. (56)
For a,=0 anda,=7/6:
U2:U1:W:ﬁ2:0. (57)

Solution procedure

1. By Eq.(42), Ajj, B, andDy; (i, j=1, 2, § can be calcu-
lated, and then substitute the results into Ed).

2. Substitute Eq(48) into Eq. (44) with boundary conditions
(56) and (57).

3. Separate these equations into three groups as previously de-
scribed.

4. After the manipulation by Chebyshev collocation method as
mentioned above, the unknown constaats,, b, and
Cmn in EQ. (48) can be obtained.

5. Substitutea,,n, bmn, andcy,, into Eq. (48) to receiveu,,

u,, andw.

6. Substituteu;, u,, andw into Eq. (43) to obtain the stress

and moment resultants.

For M=N=12 in Eq. (48), all the results ofu;, u,, w,
N1, Ny, Nio, My, M,, and M4, are depicted in Figs. 6—14,
respectively.
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The results 1 and N in Eq. (48) are greater than }2are
extremely close to those in columi€_12_12). Thus the only

0.0021 results in columng$C_8_8), (C_10_10), and(C_12_12) are pre-
| sented in this case.
M;; 00017 Let Aa, be the range ofr,. ProvidedRA a,=constant, the
( 2) o] magnitude oR must be decreased by increasing the magnitude of
Fa=m Aw,. This causes the displacememtdecreasing when the radius
-0.0017 R is decreased. For convenience, the middle point of the shell

is specified as the sample location in each intervakgf and
take a,=7/12 for each interval. The phenomenon of the center-
point displacementv versus the change of curvature is plotted in

-0.0021

Fig. 15.
) Le Case 2
(radian) 0% Consider a fou_r-layered cross-ply Ia_minated pomposite cylindri-
oy (m) cal shell which is subjected to a uniformly distributed loggl
] ) =1000 Pa. The cylindrical shell is clamped on the edags
Fig. 14 Moment resultant M, in Case 1 =0,a;=4 and simply supported on the edges=0,a,= /6.

The mechanical properties, thickness of each layer, and the di-
mensions are the same as those in Case 1.

) ] ) For clamped edges, the boundary conditions are as follows:
The numerical results afi;, u,, w, N;, andN, are listed in For @;=0,4:

Tables 1-5 for reference. At the same time, the results by finite

element method incorporated with NASTRAN software are dem- Uy = U,w=B;=0. (58)
onstrated to validate the correctness of the method of Chebyshev

polynomials. A 3% 16 (32 for a;-direction, 16 fora,-direction

mesh is adopted for the finite element method in this case. Hofwer simply supported edges, the boundary conditions are as
ever, the results oN,,, M, M,, andM,, are approaching to follows:

zero in the interior region of the cylindrical shell. Although some For a,=0,7/6:

maximal values occur near the corners or edges of the cylindrical

shell, they are omitted herein. U;=u,=V,=M,=0. (59)

Table 1 The displacement of u, in Case 1

Tcbx*)
Uy
(unit: m)
Pd*) c_8 8" c_10_10" C_12 12" Na™v)

(1, 748) 3.71799E-7 ¢ 901) 1.71899E-7¢470)  —4.94760E-8 (6.56) —4.64279E-8
(1, 27/48) 4.12555E-8 (- 119) 1.63615E-7¢177)  —2.23942E-7 (4.78) —2.13726E-7
(1, 37/48) 4.70309E-7(169 3.48953E-7(98) 1.88485E-7(7.21) 1.75810E-7
(1, 47/48) 8.29816E-7(2105 4.11935E-7(995) 3.91099E-83.96 3.76202E-8
(1, 57/48) 4.70309E-7(169 3.48953E-7(98) 1.88485E-7(7.21) 1.75810E-7
(1, 67/48) 4.12555E-8 (- 119) 1.63615E-7¢177)  —2.23942E-7 (4.78) —2.13726E-7
(1, 7/48) 3.71799E-7 ¢ 901) 1.71899E-7¢470)  —4.94760E-8 (6.56) —4.64279E-8
(2, m48) 0 0 0 0
(2, 2/48) 0 0 0 0
(2, 3m/48) 0 0 0 0
(2, 4 7 148) 0 0 0 0
(2, 5m/48) 0 0 0 0
(2, 67/48) 0 0 0 0
(2, 7ml48) 0 0 0 0
(3, m48) —3.71799E-7 (901)  —1.71899E-7 (- 470) 4.94760E-86.56) 4.64279E-8
(3, 2/48) —4.12555E-8 (119)  —1.63615E-7 (- 177) 2.23942E-7(4.78 2.13726E-7
(3, 37/48) —4.70309E-7 (168) —3.48953E-7 (98) —1.88485E-7 (7.21) —1.75810E-7
(3, 47/48) —8.29816E-7 (2105) —4.11935E-7 (995) —3.91099E-8 (3.96) —3.76202E-8
(3, 57/48) —4.70309E-7 (168) —3.48953E-7 (98) —1.88485E-7 (7.21) —1.75810E-7
(3, 6m/48) —4.12555E-8 (119)  —1.63615E-7 (- 177) 2.23942E-7(4.78 2.13726E-7
(3, 7/48) —3.71799E-7 (901)  —1.71899E-7 (- 470) 4.94760E-86.56) 4.64279E-8

Notes: P&): position (a; ).

Tct**): type of collocation points.

OF Chebyshev collocation methodi(=N=8 in Eq. (48)). The values in the parentheses of the8C8 column indicate the
errors compared with the results of NASTRAN. The errors are calculated by the fot@uBa 8)—Na/Nax100%.

(D: Chebyshev collocation methodi(=N=10 in Eq. (48)). The errors are calculated by the formifa 10_10)—Na/Na

%X 100% and expressed in parentheses.

(ID: Chebyshev collocation methodi(=N=12 in Eq.(48)). The errors are calculated by the form@@a 12 12)—Na/Na

X100% and listed in parentheses.

(V): Numerical solutions obtained by the finite element method and NASTRAN software and designated by Na.
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Table 2 The displacement of u, in Case 1
Tct*)
U,
(unit: m)
Pd*) c_s 8" C_10_10" C_12 12 Na™v)

(1, 748 1.99395E-5136) 9.44063E-6(12) 8.16273E-6 (- 3.58) 8.46580E-6
(1, 2m/48) 5.25849E-6 (-475) —2.65204E-6 (89) —1.29907E-6 (-7.48) —1.40410E-6
(1, 3n/48) —6.98802E-6 (2762) 3.813&77 (—256) —2.29287E-7(6.09) —2.44156E-7
(1, 4m/48) 0 0 0 0
(1, 57/48) 6.98802E-6(2762  —3.81387E-7 (-256) 2.29287E-7+{6.09) 2.44156E-7
(1, 6m/48) —5.25849E-6 (-475) 2.65204E-6(89) 1.29907E-6 (-7.48) 1.40410E-6
(1, 7 wl48) —1.99395E-5 (136) —9.44063E-6 (12) —8.16273E-6 (-3.58) —8.46580E-6
(2, w48 1.91868E-582) 9.96128E-6 (-5) 1.00206E-5 (-4.71) 1.05160E-5
(2, 2m/48) 4.71305E-6 (- 334) —2.49949E-6 (24) —1.86362E-6 (-7.65) —2.01800E-6
(2, 3748 —7.17021E-6 (1470)  —2.45568E-7 (-46)  —4.29606E-7 (-5.92) —4.56640E-7
(2, 4m/48) 0 0 0 0
(2, 5m/48) 7.17021E-6(1470 2.45568E-7 (- 46) 4.29606E-7 {5.92) 4.56640E-7
(2, 6 w48  —4.71305E-6 (-334) 2.49949E-6(24) 1.86362E-6 (- 7.65) 2.01800E-6
(2, 7m/48) —1.91868E-5 (82) —9.96128E-6 5) —1.00206E-5(4.71) —1.05160E-5
(3, ml48) 1.99395E-5136) 9.44063E-6(12) 8.16273E-6 (- 3.58) 8.46580E-6
(3, 2748) 5.25849E-6 (-475) —2.65204E-6 (89) —1.29907E-6 (7.48) —1.40410E-6
(3, 37/48) —6.98802E-6 (2762) 3.81387E-7@56) —2.29287E-7 (6.09) —2.44156E-7
(3, 47/48) 0 0 0 0
(3, 5 748) 6.98802E-6(2762  —3.81387E-7 (-256) 2.29287E-7+{6.09) 2.44156E-7
(3, 6m/48) —5.25849E-6 (-475) 2.65204E-6(89) 1.29907E-6 - 7.48) 1.40410E-6
(3, 7748) —1.99395E-5 (136) —9.44063E-6 (12) —8.16273E-6(3.58) —8.46580E-6

The solution procedure is similar to that in Case 1.

For M=N=12 in Eq.(48), all the results ofu;, u,, w, Ny,
N,, Ny, My, M,, and My, in the case are depicted in Figs. Similarly, as the final description in Case 2, the trend of center-
16-24, respectively. Comparing the resuldd£N=12 in Eq. point deflection versus the change of curvature is plotted in Fig.
(48)) with those obtained by NASTRANthe mesh is same as in 25.

Case 1}, all the errors of the results are very small. For space
saving, numerical result lists are omitted.

Table 3 The displacement of w in Case 1
Tct*)
w
(unit: m)
Pd*) c_8_g" C_10_10" C_12 12 Na')

(1, /48 5.62959E-4 (- 24) 7.31787E-4{1.21) 7.34624E-4+0.83) 7.40790E-4
(1, 27/48) 8.45028E-4(54) 5.60092E-4(2.18 5.27200E-4 - 3.82) 5.48130E-4
(1, 37/48) 5.67917E-4(15) 4.55912E-4 (- 7.53) 4.88377E-40.95) 4.93070E-4
(1, 4w/48) 3.61999E-4 (- 32) 5.63981E-4(5.81) 5.35111E-4(0.39 5.33010E-4
(1, 57/48) 5.67917E-4(15) 4.55912E-4 (- 7.53) 4.88377E-40.95) 4.93070E-4
(1, 67/48) 8.45028E-4(54) 5.60092E-4(2.18 5.27200E-4 - 3.82) 5.48130E-4
(1, 7m/48) 5.62959E-4 (- 24) 7.31787E-4{1.21) 7.34624E-4+0.83) 7.40790E-4
(2, w48 5.45022E-4 (- 25) 7.44034E-4(1.82 7.31242E-4 0.07) 7.30720E-4
(2, 2m/48) 8.17424E-4(38) 5.67869E-4 (-4.01) 5.81378E-4{1.73) 5.91590E-4
(2, 3n/48) 5.42535E-4(17) 4.57548E-4 (- 1.53) 4.63682E-440.21) 4.64650E-4
(2, 4m/48) 3.38754E-4 (- 38) 5.63529E-4(2.78 5.53511E-4(0.95 5.48290E-4
(2, 57/48) 5.42535E-4(17) 4.57548E-4 (- 1.53) 4.63682E-40.21) 4.64650E-4
(2, 67/48) 8.17424E-4(38) 5.67869E-4 (-4.01) 5.81378E-4(1.73) 5.91590E-4
(2, 77148) 5.45022E-4 (- 25) 7.44034E-4(1.82 7.31242E-4 (- 0.07) 7.30720E-4
(3, 748 5.62959E-4 (- 24) 7.31787E-4{1.21) 7.34624E-4+0.83) 7.40790E-4
(3, 27/48) 8.45028E-4(54) 5.60092E-4(2.18 5.27200E-4 - 3.82) 5.48130E-4
(3, 37/48) 5.67917E-4(15) 4.55912E-4 7.53) 4.88377E-440.95) 4.93070E-4
(3, 4m/48) 3.61999E-4 (- 32) 5.63981E-4(5.81) 5.35111E-4(0.39 5.33010E-4
(3, 57/48) 5.67917E-4(15) 4.55912E-4 (- 7.53) 4.88377E-40.95) 4.93070E-4
(3, 67/48) 8.45028E-4(54) 5.60092E-4(2.18 5.27200E-4 - 3.82) 5.48130E-4
(3, 77/48) 5.62959E-4 (- 24) 7.31787E-4{1.21) 7.34624E-4+0.83) 7.40790E-4
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Table 4 The stress resultant of N, in Case 1
N;  Tch)
(unit:
Pa m)

Pd*) c_s_g" c_10_10" C_12_12 Na'v)
(1, 7/48) 126.780 (- 13) 143.158 (- 1.81) 145.375 ¢ 0.29) 145.798
(1, 27/48) 162.593(6.47) 135.476 (- 11.3) 144.597 ¢ 5.32) 152.716
(1, 3n/48) 130.567 (- 11) 126.974 (- 13.4) 137.399 (- 6.34) 146.703
(1, 47/48) 105.455 (-28.4) 133.906 {-9.10) 142.990 {2.93) 147.320
(1, 5m/48) 130.567 (- 11) 126.974 (- 13.4) 137.399 (- 6.34) 146.703
(1, 6m/48) 162.593(6.47) 135.476 < 11.3) 144.597 ¢ 5.32) 152.716
(1, 77/48) 126.780 (- 13) 143.158 (-1.81) 145.375¢0.29) 145.798
(2, ml48) 141.717 (- 1.55) 141.235¢1.89) 150.120(4.29 143.951
(2, 27/48) 144.233 (- 15.3) 141.715¢16.7) 160.306 {-5.81) 170.209
(2, 3m/48) 132.355 (- 7.54) 130.859 {-8.58) 134.798 {-5.83) 143.148
(2, 47/48) 121.953 (-17.5) 125.636 {- 15.0) 144.721 ¢ 2.09) 147.813
(2, 5m/48) 132.355 (- 7.54) 130.859 {-8.58) 134.798 {-5.83) 143.148
(2, 6m7/48) 144.233 (- 15.3) 141.715¢16.7) 160.306 {-5.81) 170.209
(2, 7m48) 141.717 - 1.55) 141.235 { 1.89) 150.120(4.29 143.951
(3, 7l48) 126.780 (- 13) 143.158 (-1.81) 145.375¢0.29) 145.798
(3, 2m/48) 162.593(6.47) 135.476 < 11.3) 144.597 ¢ 5.32) 152.716
(3, 3748 130.567 (- 11) 126.974 (- 13.4) 137.399 (- 6.34) 146.703
(3, 4ml48) 105.455 (-28.4) 133.906 {-9.10) 142.990 - 2.93) 147.320
(3, 57148) 130.567 (- 11) 126.974 (- 13.4) 137.399 (- 6.34) 146.703
(3, 6m/48) 162.593(6.47) 135.476 - 11.3) 144.597 5.32) 152.716
(3, 7m/48) 126.780 (- 13) 143.158 (-1.81) 145.375¢0.29) 145.798

Discussion two groups of problems which still can not be accomplished. They

Through the features of Chebyshev collocation method &€ (@ the problem of a shell subjected to concentrated loading,
stated, the method can be used to solve the problems of lamina#@d () the problem of thick laminated anisotropic shells. In group
anisotropic shells with complicated boundary conditions. The s, it is hard to handle if the position of the concentrated loading
lutions to most problems in this field of laminated anisotropits not located at one of the collocation points. However, that may
shells can be obtained by the proposed method; however, therelageovercome by selecting larger valuesfandN, e.g.,M and

Table 5 The stress resultant of N, in Case 1

N, Tc*)
(unit:
Pa m)

Pd*) c_8 8" Cc_10_10" C_12_12M Nav)
(1, m48) 5189.97(3.87) 4943.26 (- 1.06) 4962.83 ¢ 0.67) 4996.41
(1, 27/48) 162.59 (- 96.7) 135.48 (- 97.3) 4964.71 € 0.70) 4999.89
(1, 37/48) 5203.38(4.09 4944.36 (- 1.10) 4964.21 € 0.70) 4999.16
(1, 4m/48) 105.46 (- 97.9) 133.91 ¢ 97.3) 4964.26 £ 0.70) 4999.18
(1, 57/48) 5203.38(4.09 4944.36 (- 1.10) 4964.21 ¢ 0.70) 4999.16
(1, 67/48) 162.59 (- 96.7) 135.48 (- 97.3) 4964.71 € 0.70) 4999.89
(1, 7/48) 5189.97(3.87) 4943.26 (- 1.06) 4962.83 ¢ 0.67) 4996.41
(2, m48) 4998.47(0.02 4999.01(0.03 4998.89(0.02 4997.68
(2, 27/48) 144.23 (-97.1) 141.72 ¢ 97.2) 5000.37(0.02 4999.48
(2, 37/48) 4999.95(0.01) 5000.08(0.01) 5000.04(0.07) 4999.53
(2, 47148) 121.95 (- 97.6) 125.64 (- 97.5) 4999.73(0.01) 4999.19
(2, 5m/48) 4999.95(0.0) 5000.08(0.01) 5000.04(0.01) 4999.53
(2, 67/48) 144.23 (- 97) 141.72 (£ 97.2) 5000.37(0.02 4999.48
(2, 7/48) 4998.47(0.02 4999.01(0.03 4998.89(0.02 4997.68
(3, m48) 5189.97(3.87) 4943.26 (- 1.06) 4962.83 { 0.67) 4996.41
(3, 27/48) 162.59 (- 96.7) 135.48 (- 97.3) 4964.71 ¢ 0.70) 4999.89
(3, 3m/48) 5203.38(4.09 4944.36 (- 1.10) 4964.21 ¢ 0.70) 4999.16
(3, 47/48) 105.46 (- 97.9) 133.91 (- 97.3) 4964.26 { 0.70) 4999.18
(3, 5m/48) 5203.38(4.09 4944.36 (- 1.10) 4964.21 ¢ 0.70) 4999.16
(3, 67/48) 162.59 (- 96.7) 135.48 (-97.3) 4964.71 € 0.70) 4999.89
(3, 7/48) 5189.97(3.87) 4943.26 (- 1.06) 4962.83 { 0.67) 4996.41
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N are 12 in two cases, for example. The larger valiMesind N
make every collocation point close to the adjacent collocation
points. That will match the position of concentrated loading as-
ymptotically. In group(b), the effects otr,, 71,, andr,, (zis the
direction of the normal to the middle surfaae neglected owing

to the thin shell theory, nevertheless the termsof 7,,, andr,,
(interlaminar stressg¢sshould be considered in thick laminated
anisotropic shells. On the other hand, it is possible that the Cheby-
shev collocation method can be used to handle the nonlinear prob-
lems. As for the nonlinear problems the efforts should be put to
solve a system of nonlinear partial differential equations. Please
refer to Refs[14], [15]. Some methods, like the Picard iteration,
are possibly useful for solving the nonlinear problems.

From the section of examples, compare the solutions of the
Chebyshev collocation method to those by the finite element
method and NASTRAN software in Cases 1 and 2. NASTRAN is
a precise and reliable finite element analysis software that has
been widely used in many fields, such as science, physics, and
engineering. In the two cases, the solutions of NASTRAN soft-
ware are listed in comparison with the results in columns
(C_8_8), (C_10_10), and(C_12_12) of the Chebyshev colloca-
tion method. It is found that most of the values of error in columns
(C_8_8) and(C_10_10) are much greater than those in column
(C_12_12). The result of the Chebyshev collocation method in
column(C_12_12) are very close to that by NASTRAN software.
That implies the Chebyshev collocation method is a correct and
acceptable one. As for the curvature effect on deflection, it is
obviously observed that the higher the curvature, the larger the
deflection in both cases. That strongly hints that the original cur-
vature of a thin shell will affect the deflection significantly.

Conclusion

The Chebyshev collocation method is proposed herein to tenta-
tively solve most of the problems of laminated anisotropic thin
shells with any boundary conditions due to any type of loading,
except the concentrated load. The method possesses two merits:
(a) it is more efficient and applicable than traditional methods,
e.g., the Fourier series method, to handle the problems of compli-
cated material properties and boundary conditions, @mdhe
analytical results of the method are a group of functions that is
more useful than those of finite difference and finite element
methods. The numerical results in comparison with those by
NASTRAN software prove that the proposed method is satisfac-
torily acceptable. To the extension, the problems of any type of

o6 loading and complex geometry are the further research objective.
Fig. 24 Moment resultant M, in Case 2
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Nomenclature

A111A12" a 1A66 =

Al IAZ

amnxbmnvcmn

B11,B12,7"Bes = _ _
= bending stiffness

D11,D12,7-,Des
E1.E2.G1o,v12

E,F,G

fl,fz,f3 =
K

o o NL
L,M,N

n

N1,N3,Npp =
= moment resultants
= shear stress resultantsdn and

MllMZ‘MlZ

Q11Q2

Q11,Q12,"*,Qes =
61116127”' 1666 =

r

R

R1 rRZ
T121T217V1 ,V2
. _Ta(x)
Tm(@1), Ta(az)

Uy, Uy, W

extensional stiffness

Lame parameter

coefficients of Chebyshev series
coupling stiffness

mechanical properties of a lamina with
unidirectional fibers

first fundamental magnitudes of shell
theory

functions of curvilinear coordinates
normal curvature

= second fundamental magnitudes of shell

theory
unit normal vector
stress resultants

ay-directions

reduced stiffness in natural coordinate
system

reduced stiffness in arbitrary coordinate
system

position vector

radius of a cylindrical shell

radii in @, and a,-directions

Kirchoff’s effective shear stress resultants
the nth-order Chebyshev polynominal

= modified Chebyshev polynomials in

specified intervals
displacements i, ,a, and normal to the
surface directions

Journal of Applied Mechanics

aq1,a5,z = curvilinear coordinates of the surface
B1,B, = rotations tangential to the reference surface
sg,sg,vgz = strains at the laminate geometry midplane
K1,K2,K12 = curvatures of the laminate
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 cnouwng | Analysis of a Plate Containing
s | @ Polygon-Shaped Inclusion

J. Yu

The Boeing Company, With a Uniform Eigencur‘,ature

2401 E. Wardlow Road,

MC C078-0209, An infinite isotropic plate containing a polygon-shaped inclusion with a uniform eigen-
Long Beach, CA 90807-5309 curvature is analyzed. An algorithmic closed-form solution of the curvature is derived for
both interior and exterior points of the polygofDOI: 10.1115/1.1572898

1 Introduction where

A problem of an infinite isotropic plate with an embedded in- -
homogeneity or external reinforcement under thermomechanical Sijki (X) = —{f M(&,X)dA
loading is of practical interest since it has been found in many @
engineering applications. A particular example in aerospace appli-
cation is a bonded composite repair over a cracked metallic struc— _ (&%) (§—%))
ture. A repair method using composite patches to reinforce the'vI k(€.X)=— A p?
cracked structure has been shown to be very promising owing to
the light weight, high stiffness and strength of the composite. The p=|&—x, (3)
inhomogeneous plate under thermo- mechanical loads will induce | . . . .
both bending and in-plane deformatiofs). This problem can be i 1S the Kronecker deltay is the Poisson ratio, and the subscript
solved more conveniently by the equivalent inclusion method, ffPMma denotes a partial differentiation with respect to in-plane
which the stresses and strain induced by an inhomogeneity oc€gordinates. . .
pied regionQ will be approximated by those induced by the Ntroducing integral$d andH,, defined, respectively, by
eigenstrains and eigencurvatures in the same region of the homo-
geneous material when these eigenstrains and eigencurvatures are H(x)=J’ InpdA
selected appropriately,1]. Closed-form solutions for inclusion Q
problems with eigenstrains and eigencurvatures are, therefore,
also of practical interests. While most existing works on inclusion Hi (%) = f (S X (& =) dA )
problems concern with a plane or three dimensional solid contain- Q p? '
ing eigenstraingsee the book by Murg2] for the comprehensive . .
reviewd, only few deals with a plate containing eigencurvatured€n Siji (X) in Eq. (2) can be rewritten as
Beoms|[3] was the first one to consider the problem of a plate 1
containing an elliptical inclusion with a uniform eigencurvature. Sij(X)=—=[(1+»)H j; S+ (1= v)Hy ;1. (5)
The approach employed by Beorf3] will be extended here to am
include the analysis of a polygon-shaped inclusion with a uniform o aigorithm to evaluats;,, as prescribed by Eq5) for an
eigencurvature. The curvature and corresponding resultant m@pitrarily polygonal region will be delineated in the next section.
ment are obtained by performing the integrations according to tmcesijkl and«;; are determined, respectively, from E¢8) and

Rodin's algorithmic  solution procedure[4], for a two- (1) the resultant moment is then computed from the curvature as
dimensional planar inclusion with uniform eigenstrains. Anoth B],

algorithmic solution to the uniform eigenstrain problem also de-

velops closed-form solutions that are used in a computational ap- Dijui (ki — ki) inside O

proach to describe elastic fields in a polygon-shaped inclusion, Mij={ D.. outside O (6)
[5]. However, the computational approach taken by Rodin is par- ijkt Kk

ticularly attractive because it is simple and robust.

: )

i

(1+v)Inp S+ (1—v)

whereDjj is the bending stiffness tensor and it is defineddh
2 Formulation

Consider a deformation of an infinite isotropic plate containing
a polygonal subregiof? in which a uniform eigencurvature; is 3 Algorithm

prescribed. Following Beon3], the curvaturex;;(x) and the S is evaluated by using Rodin’s algorithf]. This algo-

i * . . . .
eigencurvature; are related by an Eshelby-type ten§gg, such  rithm will be briefly summarized here. The reader should refer to
that [4] for more details. Rodin’s algorithm is implemented in three
(0 =S (X) K 1) stages. First, the inclusion domaihis decomposed into a set of
ki (X) = Sijia (X) i 1) : ; ;
triangular elements in such a way that the point where the
Cormibuted by the Abolied Mechanics Division offE A © solution is evaluated is a common vertex of all the elements.
ontributed by the Applied Mechanics Division o AMERICAN SOCIETY OF ) ;
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- .SecondH’ Hia and thusS;;, are calculated for each element in
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 3’ItS element coordlnate Sy5tem and t_ransform the components of
2000; final revision, Aug. 19, 2002. Associate Editor: B. M. Moran. Discussion ofsjji t0 global coordinates. Thirds;,, is assembled from the el-
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depasimental contributions. Using Rodin’s terminology], the trian-
ment of Mechanical and Environmental Engineering University of California—San ; _
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a rIar elements which make up of the domdare called du .
final publication of the paper itself in the ASMBURNAL OF APPLIED MecHan-  Plexes and they are referred to as simplexes for the case of right
ICS. triangles. Since a duplex can be formed from two simplexes and
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A duplex of inclusion £
A X2

s
/
s
3
’
’
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/

» Xi
m M
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X
(b) ()
Fig. 1 Two-dimensional construction of duplexes used in Rodin’s algorithm, [4]. Part (a) shows the global structure and coordi-
nate systems. Parts (b) and (c) show typical duplexes, with vertices shown as filled circles. In the (7,0 coordinate system, for

duplex (b) add the simplex with vertices  (0,0), (b,c™), (b,0) to the simplex with vertices  (0,0), (b,0), (b,c™), while for duplex (c)
subtract the simplex with vertices  (0,0), (b,0), (b,c™) from the simplex with vertices  (0,0), (b,0), (b,c™).

the computation for the latter is more efficient than that for the b c
former, the elemental tens&;y, will be derived here for a sim- H(b,c)=— i 3c—2btan! 5) —cln(b?+c?)|,
plex in its element coordinate system.
Referring to Fig. 1, let us define the element coordinate system 27¢ c!
as follows. It has the origin at, basis vectokn,t) wheren is an H.(b,c)= Z{b —tan?! b”

unit vector outward normal to the edge anid the tangent vector,
and the corresponding coordinates ¢). In these coordinates, the
positions of vertices are represented by the péirs™) and (b,
c~). For a convex polygonb is positive whenx is an interior
point of () and becomes negative for otherwise. For a simplex
with one of the vertices defined l§,c), H andH,, in Eq. (4) can

be rewritten as

1 (b (calb
H(X):EL fo In( 7%+ ¢%)dzdy,

b foub g2
Hgg(x):fo fo Wdﬁdn,

12

(7)
b (fcn/b 57]
Hep(X)=H (X):J' f ———;d¢dx,
i{n n{ oJo 7]2+§2
b [cnlb 7]2
HW(X):L fo Wdfdﬂ,
) ) ) o ) Fig. 2 Geometrical parameters of the duplexes for evaluating
which, upon integration, will yield the following results: the asymptotic form of the vertex singularity, [4]
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be shown that by using Voigt's conventio§,, in the element
coordinate system is represented by>a33matrix as

(2=v) | (1-v) |
Sll:S,],m,]:E 20— > sin2a + 3 Sinda
1 (1-2v) . (1-v)
512287”7“25 2va+ 5 Sin2a — 8 sinda
(v—1)
S15= S =35 [5—6cos2n+ cosda— 4 log(seCa)]

Fig. 3 Regular polygon-shaped inclusions 1
S)= S“W:E[Zv—(l— v)C0S2x |Sin2a

b? 1
Hy(b,€)=H . (b,c) = - [In(b?+¢?) —Inb?], Sr=Sy11= 7512+ (1~ v)cos2]sin2a
(8)

2

b
H,y(b.c)=—tan™

B .
To obtain the tenso§;j,, in the global coordinate systerhl, and

1
Sos=Syni=g [(1-v)cod acos2]

Hy, must be differentiate with respect toas prescribed irf5). 1
However, it is more convenient to obtaB in the element Sa1= Syiny = 35 [3(r—1) +4cos— (1—v)cosda
coordinate system sin€® b=b(x), c=c(x) and(ii) in the latter
coordinatesib/dn = dcldf = —1 anddbl/a{ = dcldn =0. It can +2(1+ v)log(seéa)
0.5
04
0.3
02 —o—p=4
+p=8
o1t —a&—p=16
) ——p=32
0 —%—p=64
0400 01 02 03 04 05 06 07 08 08)1j0 |...... circle
02 } X1
-0.3
-0.4
(a)
0.5
04 1
—6—p=4
03} =—p=8
. —&—p=16
) —e—p=32
02 t —¥%—p=64
------ circle
01
0 1 L by i L L I L L
0 01 02 03 04 05 06 07 08 09 1
X1
(b)

Fig. 4 Curvatures kq; and k,, in regular polygon-shaped inclusions along
the x,-axis for an eigencurvature  «j;=(1, 0, 0). (8) 11, (b) rp,
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Fig. 5 Curvatures ki, in regular polygon-shaped inclusions along Xq-axis for an
eigencurvature  «j;=(0, 0, 1)
1 plate is assumed to be 0.3 throughout the computation. The verti-
Sso= S,,;gf@[(l— v)+4vcos2u+(1—v)cosde ces of the polygon in polar coordinates are prescribed by
(k=1)
+2(1+ v)log(seda) r=1 and 6,=2w 5 : k=1,2,...p,

1 . wherep is the number of sides of the polygon. Computational
Sas=Syen= 7 -[(1- v)cosasin® a] results ofx; and «, along thex,-axis for «; =(1,0,0) and for
various values op are plotted in Figs. @) and Fig. 4b), respec-
tively. It should be noted that,, are equal to O in this case. The
: ©)  result from Beom(3] for a circular inclusion is also included in
the figure for comparison. Similarly, the results sf, along the
Xq-axis forKi’j =(0,0,1) are plotted in Fig. 5 while,; and«,, are
determined to be zero. In Figs. 4 and /&,,, k5 and xq, are
aluated along th&,; axis using twenty points at equal spaces
over the half-polygonal domain and these points correspond to
those chosen on the plots. From Figs. 4 and 5, the curvature dis-
tributions are not uniform inside the inclusion but approach to the
Beom'’s solutions with the increasing number of sides.

5 Conclusions

An infinite isotropic plate with a uniform eigencurvature in a
b,=4sinB,, c;=4{,—8c0sB,~(,, C,=—5c0B,, polygon-shaped inclusion is analyzed. The method employed is
simple and robust. An algorithmic closed-form solution of the

‘é"heer\?aﬁlulztmesg'St:?)fe[\fir:rg tczg)qeu\slﬁ]rtetxhgn;bgvaepg(o?gg;znos'curvature is obtained. This solution can be used as one of the basic
y 93k 1a Eq. sing P solutions for obtaining the elastic fields in an isotropic plate con-
for b andc, and discarding all nonsingular ternts;,, takes the

followi totic form: taining a general shaped inhomogeneity. The solution of the latter
ollowing asymptotic form- problem is of practical interest because it finds a wide range of

c

b

Similar to the strain solution obtained earlier by Rofihfor a
“planar” inclusion with a uniform eigenstrain, the present curva
ture solution has a logarithmic singularity near the vertex and it
not constant inside subregidi. This vertex singularity can be
addressed in a similar manner as[#l. By assigning the sub-
scripts 1 and 2 to the edges that form the veltsee Fig. 2 and
denoting lengths of these edges by and ¢,, from Fig. 2, the
following relations hold for a poink close to the vertex:

blzﬁsinﬁlv CI—:5CO$11 C]T:_el-"_ 5C0$1%—€1’

a=tan !

1 V4 applications including analyses and designs of adhesively bonded
S~ E(Mf Mz)'“g, repairs with an octagonal patch in aging aircrfiftg].
where? is a representative edge length, tenddrs and M, are References
represented by the same matrix in the basis ¢;) and (., ty) [1] Belorr:j, H.lG.,Iand Earmme, Y. Y., 1?199, l“TTe Elastic Field of an Elliptic
i i 1 Cylindrical Inclusion in a Laminate with Multiple Isotropic Layers,” ASME J.
and that matrix is defined by Appl. Mech..66, pp. 165-171.
0 0 2(1_ V) [2] Mura, T., 1987 Mechanics of Defects in Solidsartinus Nijhoff, Dordrecht.
[3] Beom, H. G., 1998, “Analysis of a Plate Containing an Elliptic Inclusions
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4 Numerical Examples York
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f ; ; ; Solution for the Elastic Fields in Bonded Patched Sheets,” Int. J. Solids
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A numerical method called the boundary walk method is described in this paper. The

Department of Theoretical and Applied boundary walk method is a local method in the sense that it directly gives the solution at
Meghamps, the point of interest. It is based on a global integral representation of the unknown

Cornell University, solution in the form of potentials, followed by evaluating the integrals in the resulting
Ithaca, NY 14853 series solutions using Monte Carlo simulation. The boundary walk method has been

applied to solve interior problems in potential theory with either Dirichlet or Neumann
boundary conditions. It has also been applied to solve interior problems in linear elas-

M. D. GI‘IgOI’IU ticity with either displacement or traction boundary conditions. Weakly singular integral
Professor, formulations in linear elasticity, to which the boundary walk method has been applied, are
Department of Environmental also derived. Finally, numerical results, which are computed by applying the boundary
and Civil Engineering, walk method to solve some two-dimensional problems over convex domains in potential
Cornell University, theory and linear elasticity, are presented. These solutions are compared with the known
~ Ithaca, NY 14853 analytical solutions (when available) or with solutions from the standard boundary ele-
e-mail: mdg12@cornell.edu ment method[DOI: 10.1115/1.1558074
1 Introduction cient for homogenization problems for materials with heteroge-

The commonly used numerical methods in physics and en@gous or random material properties. But the main disadvantage
neering can be roughly categorized as global or local metho § the local methods IS their rather limited applicabiliat
'péesenl to solve engineering problems when compared to meth-

Global methods are those which provide the solution over t like the finite el ¢ thod the bound | ¢
entire domain of the problem. The finite element method and tﬁ’gs ke the Tinite €lement method or the boundary €lemen
ethod. Increasing the versatility of local methods is a matter of

boundary element method are the two most commonly used gm Hinui h
bal methods in practice. The main disadvantage of global metho Inuing researcn. .
qhe present paper illustrates the application of a local method,

is that they are indirect. The solution first needs to be compute ; ;
y b glled the boundary walk method, to solve problems in potential

over the entire domain of the problem and then the solution at t! ai lastici di onal d X
points of interest needs to be interpolated. This makes the gloBAFOrY and linear elasticity on two-dimensional convex domains.

methods, in general, inefficient if solutions at only a few pointdumerical examples are presented in the form of some simple
are desired. Another disadvantage associated with a global metf¥@TPles on convex domains. )
is the need to discretize the domding., finite element methpd | € local method described in this paper is called a boundary
or the surface of the domaite.g., boundary element method walk method since it simulates a ran(_jom walk on the bom_mdary of
Meshing is a burdensome task and the conversion of the domdf# domain. It is based on a global integral representation of the
surface to elements in the finite element method/boundary elem&ffution in a form of a potential. The solution of the integral
method is often computationally intensive. Also, the discretizatid#fiuation of the corresponding density is sought in the form of a
involved may lead to inexact prob|em geometry and inaccuraf®Wwer series. The individual terms in the series are then evaluated
implementation of the boundary conditions. using Monte Carlo integration. This avoids any meshing and leads
Local methods are those which give the solution at the point & an accurate implementation of the problem geometry and
interest directly and generally do not need any discretization Bpundary conditions. It also avoids the “curse of dimensionality”
the domain/surface. Such methods have several advantages @gépciated with classical quadrature schefsee Evang3]). A
the global methods. For example, they are inherently parallel aflgtailed description of the boundary walk method can be found in
hence much less programming effort is required to parallelize t&&belfeld[4] and[5]. Hoffman[6] has also described the bound-
code when compared with either the finite element method or tagy walk method to solve Laplace’s equation with Dirichlet
boundary element method. These methods are especially wagundary conditions. A similar method is also used in practice to
suited to boundary value problems where critical regions, such $tgdy neutron and other particle transport problems in physess
points in the domain where a function of interest attains its maxtalos[7]).
mum or minimum value, are well known. In such cases there is noAnother local method based on an integral representation,
need to obtain the solution in the entire domain since it is onialled the walk on sphere method, is presented in Sab¢¢fdr
required at a few pointsee, e.g., ArsenjeM]). Some local meth- solution of the Laplace, Poisson, Helmholtz, and biharmonic
ods based on Brownian motion simulatitsee Kim[2]) are effi- equations. A similar method, called the floating random walk, has
been applied by Haji-Sheikf8] to obtain solutions of equations
To whom correspondence should be addressed. for steady and transient heat conduction. Sabelfeldhas also
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CHEAN'—:ég.I Manuscript recei(\J/reEubyI?sel?’-{]Sllr\I/IE ipplied Mechanics Division, Nov. 30}|ons with constant coefficients. A brief decrlpt_lon and application
2001; final revision, Aug. 20, 2002. Associate Editor: D. A. Kouris. Discussion on tHaf the walk on sphere method also appears in ArseflévThe
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmgnalk on sphere method is based on a local integral representation

of Mechanical and Environmental Engineering University of California— i
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until f(?Jr t.he solution as opposed to the boundary walk method. The

months after final publication of the paper itself in the ASMBURNAL OF APPLIED ma'n disadvantage of the walk on sphere metf@ee Hoffman
MECHANICS. [6]) is the need to use very small random steps near the boundary.
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Also the determination of the closest boundary position, which & Theoretical Background

needed at every step, is nontrivial for complex domains. This section is divided into three parts. The first part describes

Another local method called the random walk metheee nt(t}e class of problems which can be solved using the boundary

Chati[10]) is also used to numerically solve a class of seco . . o
order partial differential equations. It is based on the properties:g?lk method and the basic procedure followed in obtaining the

g - ; equired solution. The second part defines the estimators used to
d|ffu_5|on processes, 1.toalculus and Monte Carlo simulation andevaluate the multidimensional integrals occurring in the solution.
details can be found in @ksenddll].

One of the main contributions of the current paper is that éhe third part describes the densities used in generating the ran-

demonstrates the application of the boundary walk method gm variables which are used in the estimators.

solve problems in potential theory with either Dirichlet or Neu- 2.1 Solution of an Integral Equation. The boundary walk

mann boundary conditions and linear elasticity with either disnethod is mainly concerned with evaluating integrals of the type

placement or traction boundary conditions. The Dirichlet problem

for Laplace’s equation is included for completeness even though it _ _

has been previously solved by Hoffm@6]. The present paper ko= Ri(X0) = LR(xo,y),u(y)dS(y) XoeD (1)

also presents weakly singular formulations for displacement pre-

scribed and traction prescribed problems in linear elasticity, farhere

two-dimensional simply connected domains that are suitable for

use with the boundary walk method. The use of a weakly singular — ’ / , —

formulation simplifies the solution procedure considerably as ex- () )\er(y,y Ju(y)dSy)+1(y) yel'=dD. ()

plained later. The weakly singular formulation for the displace-

ment problem is based on the double layer potential of the secdri@reDCR", X e R andl,  denotes the value of the integral func-

kind as described in Kuprad£&2]. The weakly singular formu- tional I(x) at the pointx,. For potential problemsR(x,y),

lation for the traction problem is based on the one given iK(x,y), u(y), f(y), andI(x) are scalar valued functions. For

Mikhailov [13] and the fact that stresses everywhere in a body, fproblems in linear elasticityg(x,y) andK(x,y) are matrix valued

traction prescribed problems, are independent of materfainctions whilew(y), f(y), andl(x) are vector valued functions.

constants. First, Eq.(2) is solved by assuming thai(y) can be repre-
The remainder of the paper is organized as follows. Sectionsgnted as a uniformly convergent series of the form

presents the theoretical background of the boundary walk method.

Section 3 describes the procedure to obtain local solutions of the p(Y) = mo(Y) X pa(Y) +N2ua(y)+ ... )

Laplace’s equation subjected to either Dirichlet or Neumal - ; ;

boundary conditions. Section 4 describes the solutions to t #gsc:g?;gg Ea(3) into Eq. (2) and equating equal powers bf

Navier’'s equation subjected to either displacement or traction

boundary conditions using weakly singular formulations. Section mo(y)="F(y)
5 presents numerical results obtained by applying the boundary
walk method to solve some test problems. Finally, some conclud- w1(Y) =K o(y)
ing remarks appear in Section 6. 5
Although attempts to numerically solve elasticity problems by H2(Y) =K po(y) (4)

the boundary walk method exist in the literatuesg., Shig14]),

to the best of the author’s knowledge, the present work represents
the first careful attempt at solving a certain class of elasticity
problems by the boundary walk method. In particular, appropriate
integral representations are chosen for solving the displacemetere
prescribed and traction prescribed boundary value problems.

KO po(y)=to(y)=f(y)

mily) = ’CkMo(Y)-

K po(y)=K[K ol (y) = L K(y,y)f(y)dS(y)

K2 po(y)=K[K! wol(y) = LL K(y,y)K(y1,52)f(y2)dS(y2)dS(y1)

Krpo(y) =K K T pol(y) = L . L K(y.y1) . . K(i—1,y0f(y)dS(yy) ... dS(y1).

| —
k times

To obtain Ix in Eq. (1), the series(3) is first multiplied by integration converts the calculation of an integral to an equivalent

R(Xo,y) and then integrated termwise ovEr This is justified expected value problem. The basic idea of the Monte Carlo
since the series is assumed to be uniformly convergent. The fifdthod used to evaluate integrals is briefly explained next.

expression folt,_is then given by Consider the evaluation of an integral
0
b b X
* I=f ¢(x)dx=f p(x)%dx. (6)
1= 2 A\"RK"(y). 5) a a P
n=0

Suppose(x) is non-negativef';p(x)dx=1 and
2.2 Monte Carlo Integration. Monte Carlo integration is
used to evaluate the individual terms in E&). Monte Carlo p(x)>0 if $(x)#0.
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Fig. 1 Boundary walk method

Hencep is a density function and

Fig. 2 Initial distribution

where the random variable
f(yo)

¥ =R(Xo, YW ——— 9
o b= RO YOG 1)) ©)
P(X) has densityo(Yo)P(Yo.Y1) - - - P(Yk-1.Yx) and
where E(-) is the expectation operator. Based on the samples K(Yi:Yk-1)
X1, - . . Xy from p, the estimator of Eq6) is then given by k= oy Wi, Wo=1
Ny P(Yk-1,Yk)
-~ 1 S d(Xi) The random variable defined in E(Q) is used to construct an
I= Nizl p(x;) adjoint estimator given by
The Monte Carlo method used in the present papee Rubin- ~ 1 . i
stein[15]) is an extension of this idea to evaluate multidimen- I= Nzl & (10)

sional integrals. The reason behind using this particular method is )
that it efficiently exploits the iterative nature of the individualwhere ;' is theith sample used to evaluate thth term in the

terms in the series solution(Please refer to Fig. L.Let
Y={Yo,Y1, ---Yn, ...} be a Markov chain with{y;el,i
=0...n}, whereyy is distributed inl" with initial densitypy(y,)

series.
The random variableg, and{; are scalars for potential prob-
lems and vectors for two and three-dimensional problems in linear

and the next points are determined from the transition densigyasticity.

p(yi_1.Yi). Hencepy(yo)dSyo) is the probability of going from
the given pointx,, to a neighborhoodl S(y,) of the pointy,.

2.3 Densities. As mentioned earlier, the initial density and

Similarly p(y;_1,y;)dS(y;) is the probability of going from point the transition density can be chosen arbitrarily as long as the rel-

yi—1 to a neighborhood (y;) of the pointy; given pointy;_;.

evant constraints are satisfied. The procedure described earlier to

The choice ofpg(yo) and p(y;_;,y;) can be arbitrary but they estimate the integrals is identical to a standard variance reduction

need to satisfy the following constraints:
Po(Yo)>0 if R(Xg,Y0)#0

P(Yi—1,Yi)>0 if K(yi_1,y;)#0.
Then

El4]= fFR(Xo vYO)’Ckf(YO)dS(YO)

where the random variable
R(X0,Y0)
gk:—
Po(Yo)
has densitypo(Yo) P(Yo.Y1) - - - P(Yk-1,Yk) and

K(Yk-1:Yk)
“Ip(Yio1.ye)

Wit (yi) @)

W, = Wo=1.

technique called importance sampling discussed in the literature.
It is a well-known fact(see Rubinsteif15]) that any positive
function that has a shape similar to the integrand and that can be
normalized, integrated and then inverted may yield a density that
reduces the variance of the estimator. Hence, a judicious use of
the density helps in reducing the variance of the estimator.

In the present paper, the initial density for all problefpsten-
tial and linear elasticityis chosen to b&(x,y), the kernel in Eq.
(11). The transition density is chosen to BEK(x,y)|, where
K(x,y) is the kernel in Eq(12). These particular choices of these
densities are motivated by their physical interpretation and by the
fact that they cancel out the weak singularities present in the in-
tegrand. These densities chosen are also known to be the optimal
densities for potential problems.

The physical interpretation dR(x,y) with (xeD, yeI') for
convex domains is explained nexPlease refer to Fig. 2The
first point on the boundary,, is chosen by shooting a ray from
the pointx, in a direction which is uniformly distributed in the

The random variable defined in E(7) is used to construct a interval [0,2x], and by finding its point of intersection with the

direct estimator given by

-~ 1 .
=52 G ®)

where §L is theith sample used to evaluate tktéh term in the
series.
Similarly,

E[Zk]= JFR(XO :YO)ka(yo)dS(yo)
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boundary. Since only convex bodies are considered, the ray will
intersect the boundary at only one point, sgy Then the prob-
ability of going from the point, to a neighborhoodd (y,), of

the pointyg, is given bypy(Yo)dS(Yo) =dw/(27). Heredw is

the angle subtended WS(y,) on a unit circle centered a and

is given by cowyO,QdSyo)/r. (It is analogous to the solid angle
subtended at a point by a surface in a three-dimensional problem.
Hence

do €Oy, x)dS(Yo)

po(yo)dS(yo)=§— oy =R(Xg,Y0)dS(Yo).

Transactions of the ASME



R(Xq,y) =cog (by,xo)/(z'n'r)v

K(y,y")=—cog ¢y )/ (mr), f(y)=2g(y) and A=1

One point to note is that the seri€®) needs to be modified be-
causen=—1 is a pole of the resolvent of the kernsee Guter
[17]). This implies that the radius of convergence of the series is
strictly less than 1 and hence would diverge when evaluated at
A=1. It is modified by the method of pole elimination which
consist of first multiplying both sides of the serig3 by (\+1),

then collecting the coefficients with equal powers\ofrhe modi-

fied series is then multiplied bRR(Xq,y,) and integrated term-
wise. u(Xp) is obtained by evaluating the series)at1 and is

Fig. 3 Intermediate distribution given by

%

1 1 n—1 n
U(xo)= 5 RE(Y)+5 2, RIK™ H(y)+K" (). (13)

Therefore n=1

Po(Yo) =R(X0,Yo). The individual terms in Eq(13) are evaluated using the direct
N ) Y ) estimator given in Section 2.2 and the densities given in Section
The transition densityK (x,y)| with (x,y eT'), can be interpreted 2 3.

similarly. (Please refer to Fig. 8lt can be shown that ) o
3.2 Interior Neumann Problem. The interior Neumann

do COLy y )ASY)) problem in potential theory is concerned with the solution of
P(Yi-1,Y)dS(y)= —=
T T Au(x)=0, xeD
=|K(yi-1,y)[dS(y)). subject to
Hence au(y)
=9(y), yel
P(Yi—1.Y) =[K(Yi-1.¥i)l. an

Using the above densities, the integrals occurring in(Egare  and
estimated by using the direct estimateee Eq(8)) or the adjoint
estimator(see Eq.(10)). fG(Y)dS(Y)ZO
Boundary integral formulations for problems in potential theory r
and linear elasticity, which are suitable for the application of th . . . .
boundary walk method, are presented next. The reader is referf%rga pointx, D. The solution can be written in the form of a
: ) - gle layer potential
to, e.g., Jaswofl6] for a general discussion of indirect boundary

integral formulations in potential theory and elasticity. 1
U(xo)=5— . logly —Xo| u(y)dS(y) (14)

3 Potential Theory - . .
. . » . whereu(y) satisfies the integral equation
A formulation for the solution of a Dirichlet problem using a

double layer potentialsee Gater[17]), and for the solution of a 1 [ cog¢yy)u(y’)

Neumann problem using a single layer potentsale Gater[17]) wu(y)= P r

are presented. The choice of the formulatiaine., single or

double layey is dictated by the general form of Eq4) and(2). The boundary walk method is now applied to obtain the solution
at u(xg) with

dsy’)—2g(y).  (195)

3.1 Interior Dirichlet Problem. The interior Dirichlet
problem in potential theory is concerned with the solution of R(Xo,y)=logly—xXol/(27), K(y,y')=—cod ¢y )(7r),

Au(x)=0, xeD f(y)=—2g(y) and r=-1.
subject to It is interesting to note that the seri€® does not need any modi-
fication for the interior Neunmann problem and can be directly
u(y)=g(y), yel evaluated at\=—1. This is because the solvability condition
at a pointx,e D. The solution can be written in the form of aneeds to be satisfied for the solution to exist and the satisfaction of
double layer potential the solvability condition leads to the cancellation of the pole of

1 p the resolventsee Guter[17]). As a result, the radius of conver-
N _ gence of the series is strictly greater than 1 and hence it does not
uxo)= 52 Jr&ny logly =Xol u(y)dSy) diverge when evaluated at=—1. u(x,) is therefore given by

1 [ C0%yy) S
- | 22 yydsty) (11) U= >, (—1)"REM(y). (16)
2 r r n=0
o ; : The individual terms in Eq(16) are evaluated using the adjoint
where(y) satisfies the integral equation estimator given in Section 2.2 and the densities given in Section

1 J' cog d)y’,y)/-l“(y,)
r

wly)=-— dsy)2gly). (12)

ko

Here ¢, , denotes the angle between the inward normal at poifit Linear Elasticity
y' and the ray from poiny’ toy. It can now be observed that the It can be easily observed that the usual boundary integral for-
boundary walk method can be applied to obta(x,) with mulation given by Rizzd18]
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J
ui(XO):JFUij(X01y)tj(y)dS(y) t)=2p -2 ()+ANV-( )+ u(XVX( ) (22)

and
—frTi;(xo,y)uj(y)dS(w XoeD 3
@7 t7( )=t p) == () +AnV-( ) +a(nxVX( ). (23)
Ui(y)ZJ 2U;i(y,2)tj(2)dS(2) Now the columngy(xy), j=1,2 of the Kelvin matrix
r
U=[g'¢e’] (24)
—f 2T;i(y,2)uj(2)dS(2) y,zel with elements
r
; ar or
is not suitable for the application of the boundary walk method. Uij(x,y)=(g")i=C| (3—4v); logr — v @)
HereU;;(x,y) (see Eq.(25) andT;j(x,y) (see Eq(26)) are the Yi oy
usual kernels found in the boundary element method literaturghere
Another important point to note is that the above formulation is 1

strongly singular. The difficulty in using a strongly singular for- C=—

mulation with the densities defined earlier is that the estimators 8mu(l—v)

E)S%ercgr%égzhasndrgtﬂé(rio»s ?c?\(/jeefl'zgn(ljtifevr?arr:?r:acset:mgne W?’a_to are fundamental solutions of E(.8). The transpose of the matrix
v IS p : : ' imaise which results from the application afto the columns ofJ with

belfeld[4]). But this is a computationally expensive task. AnOthelrespect to poiny gives the usual matrix with elements
possible way is to use different densities while preserving thé
ar ar)

earlier definition of the estimators. But then one loses the advan- 1
tage of working with densities that are very easy to sample from, Tij(x,y)= —47T(1 1 P
X i A - yi dy
and at the same time have a simple physical interpretation. To !
overcome the problems associated with using a strongly singular ar
formulation, a weakly singular formulation is used for displace- —(1- 2V)( ni(y)— (Y)”- (26)
ment prescribed and traction prescribed problems. These formula-
tions are weakly singular if the boundafy is assumed to be As seen from above, the matrix is strongly singular.
satisfy the following condition: To obtain a weakly singular matrix, consider the action of the
pseudo-traction operator on the columns(®2#) with respect to
lcog ¢y )|<Cly—y’|*, y',yel', C=constant, @&\A<1 pointy.
Now,

ar
an

((1 2v)8+2——

where ¢, , is the angle between the inward normal at pgint _
and a ray from poiny’ to pointy. The derivation of these weakly (5QJ(X,V)) 3

r ar or
((3 4v)8;+2— )

singular formulations is presented next. an(y) T oon ay; 9y,
4.1 Displacement Prescribed Problem. The derivation of 1/ ar o
the weakly singular formulation presented here for two- —(—ni(YH —n-(y)” (27)
dimensional problems is based on a similar derivation for three- 2% ay; !
dimensional problems given in Kupradge2]. The derivation of Similarly
the usualT;j(x,y) kernel found in the Rizz¢18] formulation is '
also given simultaneously for the purpose of comparison. i 1 or
The displacement field in a linear isotropic elastic solid in the (n(y)V-(g'))i=2C(1-2v») - oy i(y). (28)
absence of body forces is governed by the Navier equation, Al )
S0,
pmAU+(N+u)V(V-u)=0, (18) 1 or
wherey and\ are the Lameonstants. The standard stress tensor (N(Y)XVx(g"));=4C(1- V)( -0~ 1 o Gii )
is given by (29)
S=u(Vu+VuH+r(V-u)l. (19) Therefore,
Equation(18) can also be written as THx.y)=(t7(g)));
.u)= 1 or ar ar
wAu+(a+pB)V(V-u)=0 (20) X (C(3 anoy2c )
where a and 8 are constants anth+8)=(\+u). Equation(20) y Yi oy
leads to an introduction of a pseudo-stress tensor which is given or
by X(a+p)—4C(1-v)ad —;a—yni(y)(C(aJru)
j

SP=uVu+aVu'+B(V-u)l. (21)

1 or
—-2C(1-2 Cla+
In the case whea=u and 8=\, the pseudo-stress tensor is iden- ( VIB) = yI my(Clatp)

tical to the standard stress tensor. Multiplying the standard stress _4C(1— 30
tensorS and the pseudo-stress ten&brby the normaln on the (1-v)a). (30)
boundary gives the standard tractiband the pseudo-tractia® It is observed from Eq(30) that a weakly singular matrix can be

ie., obtained from the matri¥” by choosing
t(u)=Sn, tP(u)=sn. M
a=—
Here, S (31)

412 | Vol. 70, MAY 2003 Transactions of the ASME



o 2u(1l-v)
p= (3—4v)(1-2v)°

The transpose of the weakly singular matrix obtained for thgheref;(y) satisfies the following integral equation:
above values of and g is denoted byl *. The elements of * are

ail(Xo) = Jrsnj(yyxo)fj(Y)dS(Y) (37)

given by fity)= —f 28y (y" y)m(y)fi(y)dSty’) +2ti(y)  (38)
. 1 1 ar ar :
Ti(x,y)=— 7(3-4») T o, (1-2v) 5+ a; 3y, andt; are the prescribed tractions. Here
(32) ar ar or ar
It is also observed that by choosiag=x and 8=\ in the matrix Sij (¥ %0) = Am(1—v)r (9_y, a_y, &_yj+(1_2V) 5”&_y|)

TP, we get the transpose of matrixas expected.

It can be shown that the columns ®f satisfy Eq.(18) and _(1_2V)( 5 i_(s,ﬁ)
hence it is used to form the double-layer potential of the second "ﬁy,- "8yi
kind (see Kupradz¢12]). Using the above potential, the solutionIt is seen that the kernel in E¢@8) is strongly singular. By mak-

to the interior displacement problem can be written as ing use of the previously mentioned observation in Mikhailov

. (39)

[13], and the fact that for a traction prescribed problem the
Uj(Xg)=— f T (X0, Y) j(y)dS(y) (33) stresses are independent of the material constaats 1, v can
r be set to 1/2 in Eq(39). This simplifies the equation to
where u;(y) satisfies the following integral equation: 11 dr or or
Sij (Y Xo) = — = o= o —— (40)

I ay; dy, ﬁy]

Kiy)= LZTi’j(y,y’)Mj(y’)dS(y’)+29i(y) (34) Using Eq.(40), Eq. (38) can be written as

andg; is the prescribed displacement. = . (v / _
It clan now be observed that the boundary walk method can be fi(y) FZK'J(y YITi(y)dSy")+2t(y) (41)
applied to obtairu(xg) with
where
R(X0,¥)=—T"(Xg,y), K(y,y)=2T*(y,y’),
(X0.Y) (Xo0.Y) (y,y") (y.y") .y 11 g ar o
f(y)=29(y) and \=1. i (Y 'y)_;Fﬁ_yi’ﬁ_yj’ﬁ_y{n'(y)' (42)

Hereu(x) andg(y) are vector functions anR(x,y) andT(x,y) It is now observed that the kernel in E@1) is weakly singular.
are matrix valued functiona.=—1 is pole of the resolvent of the This solution is identical to the one given in Mikhailp3]. It is
kernel(see Kupradzg12]) and therefore a similar modification tointeresting to point out that the observation of the fact that the
the one proposed for the Dirichlet probleffior Laplace’s equa- stress in an elastic body subjected to traction boundary conditions

tion) is needed here. Finally(x,) is given by is independent of material parameters, leads to a very simple deri-
1 1. vation of Eq.(40).
_ + n-1 n Equation(37), along with Eq.(41), with the kernel given in Eq.
U(xo) = 2 Ri(y)+ 2 n; ROCTH () + L (y)). - (35) (42), can now solved foir(x) with the boundary walk method
with
The individual terms in Eq(35) are then estimated using the , s
direct estimator defined earlier. R(xo,y)=S(x0,y), K(y,y")=2K*(y",y),
4.2 Traction Prescribed Problem. The approach presented fly)=2t(y) and A=-1.

in the previous section to obtain a weakly singular integral eqUprere u(x) andg(y) are vector functions ang(x,y) andT(x,y)

tion is not suitable for the traction prescribed problem because thg matrix valued functions. Also the components of stress are
pseudo-traction has no physical meaning. A rigorous approagBpresented in a form of a vecter. Now A=1 is a pole of the
based on using a two-dimensional analog of the Weil potential, igsolvent of the kernel while the satisfaction of the solvability
presented in Mikhailo\[13] to derive weakly singular integral congition leads to the cancellation of the poleat—1 (see
equations for traction prescribed problems. It is also explicitlyjikhailov [13]). Hence, a modification similar to the one for the

pointed out that the stresses obtained for a linearized Stokes sygplacement prescribed problem is required arel) is finally
tem (incompressible materialising a hydrodynamic potential of ag%iven by
h

simple layer, the stresses obtained for an elastic material wi

v=1/2 using a single layer potential, and the stresses obtained 1 1

using the analog of the Weil potential for an elastic material, all - (Xo) =5 Rf(y)+ 52 R(K"M(y) = K" H(y) (= D"

are identical. A simpler approach, based on the above observation, n=1

and the fact thathe stresses everywhere in a body with prescribed (43)

tractions on the boundary are independent of the material coithe individual terms in Eq(43) are then estimated using the

stants is used here to derive the weakly singular integral equatioadjoint estimator defined earlier.

The derivation of the weakly singular formulation for an interior

traction prescribed problem is presented next. ;

The displacement at a poirg in a body with prescribed trac- 5 Numerical Results

tions on the boundary can be represented in a form of a singleThe boundary walk method is used herein to solve some prob-

layer potential: ems in potential theory and linear elasticity and the calculated
results are compared with the exact results in most cases. The

©

_ effect of the geometry of the problem on the accuracy of the

Ui(Xo) = Luji(y,xo)fj(y)dS(y). (36) computed results is studied. A point to note is that even though

integral equation formulations for both potential theory and elas-
The corresponding stresses are given by ticity has been given for bodies with smooth boundaries, the same
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Table 1 Solution of a Dirichlet problem on an ellipse with

a A
=1, b=2 at 6=m/4 ¥
Computed Exact
r k Value Std. Dev Value % Error
0.2 4 1.09213 0.01602 1.10614 1.267
0.4 5 1.14196 0.01997 1.12019 1.811 p=
0.6 4 0.98904 0.01543 1.01045 2.119
0.8 6 0.73811 0.02265 0.74902 1.457 o
X
Monte Carlo simulation parametend:=100,000,n=7, s=0.005,e=0.005 _| o
L
| |
LafI%iSSa?lztf:/ff a Dirichlst problem on an ellipse with a Fig. 4 Pie-shaped region for the Dirichlet problem
Computed Exact
r k Value Std. Dev Value % Error
0.2 4 0.88768  0.01282 0.87573 1365 ©o.1 Potential Theory
8:2 g _8%}% (())..811582; _0.9929%%92 Olgg',%ll 5.1.1 Dirichlet Problems. The boundary walk method is
0.8 6 —1.67908 0.01795 —1.67502 0.242 used to solve Dirichlet problems on ellipses witha=2 and

Monte Carlo simulation parametefd:=200,000,n=7, s=0.005,e=0.005

equations have been used to solve problems having nonsmooth

boundariege.g., a wedge An attempt has been made to justify it
using the following arguments given in Partfif].

The nature of the solution of both potential theory and Iinea{ ;
elasticity, in the neighborhood of a corner, has been well studiti%

Therefore, it seems justifiable to extend formally the equatio
derived for smooth boundaries to solve problems with nonsmo

boundaries with proper control based on the known informatio

b/a=5, and also on a pie shaped region. For the ellipse problems,
the following exact solution is assumed:
u(x,y)=expx)cogy).

This solution is prescribed on the boundary of each ellipse. The
results at

x=r(acog0))

y=r(bsin(6))

the ellipse withb/a=2 are presented in Table This particu-
form of describing the point of interest is followed throughout
e paper whenever problems on ellipses are solved

n It is seen that the number of terms required to compute the

result (within a prescribed tolerantelepends on the location of
yihe point of interest. It is also seen that an increase in the number
of terms included leads to increases in the standard deviation of
n]ibe computed answer. The results for the ellipse with=5 are
glresented in Table 2.

As seen from Table 2, the increase in thi& ratio leads to an
increase in the number of samples needed to achieve the desired
upper bound for the standard deviation in each individual term. It

%&o observed that a larger number of terms in the series need to

about the properties of the solution

A more rigorous approach, which involves modifying the go
erning integral equations, is described in detail in Atkin§2@.

Remark There are two important issues to consider while co
puting the result using a series expansion in which individu
terms are calculated using Monte Carlo integration:

(a) the number of the terms in a series,

(b) the number of samples to evaluate the individual temss,

A naive approach is adopted in the present paper in deciding
two parameters, and is as follows. The various modifications
the original series which were explained earlier guaranty that t
modified series converges uniformly. Therefore, a fixed number§
terms of the modified series, sayare calculated using a fixed
The number of samples is chosen so that the standard devéatio
of each term, is less than a predefined number. TheKitetms
are considered if

considered with the increase in thia ratio. The increase in
e number of samples can be explained by the fact that choosing
fdirection which is uniformly distributed leads to a nonuniform
istribution of points on the boundaries of bodies having elon-
Hated shapes. As a result more samples are needed to achieve the
required tolerance. It is also well known that the standard bound-
ary element method requires a finer discretization for solving a
problem on an ellipse with an aspect ratio 5 compared with an
|Se1Sd=e aspectfatio of 2. | |

The Dirichlet problem is also solved for the pie shaped region

whereS, denotes the partial sum of the fiksterms anck is again  shown in Fig. 4 with¢p=3/107 andL = 1 (see Atkinsorj20]). The
a predefined number. The pas, €) will henceforth be referred to two sides meeting at the origin are both straight line segments of
as the tolerance. The numerical results which are computed foleagthL, and the remaining portion of the boundary is an arc of a
given value of a tolerance are presented next. circle which is tangent to the two straight edges. The following

Table 3 Solution of a Dirichlet problem on a pie with ¢$=3/107rand L=1

oo b1 b2 3 o s s
Computed 0.63317 —0.57639 0.04940 —0.01862 0.00441 0.00158 0.00113
Mean
Std. 0.00281 0.00438 0.00483 0.00487 0.00488 0.00489 0.00488
Dev

Monte Carlo simulation parametefd:=250,000,s=0.005,e=0.005
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Table 4 Solution of a Dirichlet problem on a pie with ¢$=3/107rand L=1

o b1 b2 b3 n &5 s
Computed  0.63504 —0.57424 0.04732 —0.01840 0.00349 —0.00148 —0.00015
Mean
Std. 0.00141 0.00219 0.00242 0.00244 0.00244 0.00244 0.00244
Dev

Monte Carlo simulation parametend:=1,000,0005=0.003,¢=0.003

solution, which is harmonic in the domain, and has boundary val-5.1.2 Neumann Problems.The boundary walk method is
ues that are smoothly differentiable on the boundary, except aused to solve the Neumann problem on an ellipse ith=2

corner, is assumed here: andb/a=5. Since the results are unique upto an additive constant,
the gradient of the field variable in thedirection is calculated.
10 : ) ; P

u(r,0)=r'%sin = g|. Another approach would be to fix the field variable at one interior

' 3 point in the domain, apply the Kelvin transformation, and solve

Again, this solution is prescribed on the boundary of the pidh€ resulting exterior Dirichlet probleitsee Atkinsor{20]). This
éIITbe tried in the future.

shaped region. The reason for choosing this particular solution"¥: he followi lution i ”
that it has been proved by Wasd1] that in the vicinity of e Tollowing exact solution is assumed:

corner point, the solution to the Dirichlet problem satisfies U(x,y)=expx)cogy)
Oo(r*) a#m, a positive integer

u(x,y)= o _ .
O(r*log(r)) a=m, an integer

for 0<r=<eg, for somee>0, and point k,y) inside the domain. Table 6 Solution of a Neumann problem on an ellipse with a

Results for the problem witlp=3/107 andL=1 at =1, b=5 at =n/4
X=r cog ) Computed Exact
) r k Value Std. Dev Value % Error
y=r sin(0)
. 0.2 7 0.88654 0.02460 0.87573 1.234
for r=0.5 and#=3/20 are presented in Table 3. 0.4 7 0.20776 0.02471 0.20692 0.406
Heredy, . . . ,¢¢ are the first seven terms in the series given b$-6 7 —-0.80706 ~ 0.03232  —0.79959 0.934
7 —1.67133 0.05128 —1.67502 0.220

Eq. (13). It is observed from Table 3 that the series indeed corn-
verges for the pie shaped region which has a nonsmooth boundary: ) )

Thegdesired soplution ig obtai?]ed by considering the first four ternﬁrs‘},nte Carlo simulation parameter=1,000,000n=10, 5=0.01, £=0.01
and is given by 0.08756 with a standard deviation of 0.01685. The

exact answer is 0.09921. To increase the accuracy and decrease

the standard deviation, the values of bethnd e were changed to . ) ) .
0.003. To achieve this tolerance, the number of samples was L'ﬁ_?lle Z_goélt“gf;za displacement problem on an ellipse with
creased from 250,000 to 1,000,000. The results for & 7 —

=1,000,000 are shown in Table 4. Computed Exact

This time, the result is computed by considering the first fiver k Value Std. Dev  Value % Error
terms in the series and is given by 0.090069 with a standatd 5 7 0.03538 000416 0.03807 5752
deviation of 0.01090. This result is slightly better than the previ- v 8 0.08169 0.00560 007615  7.275
ous one. This does indicate that the results are expected to com- u 7 0.07195 0.00413  0.07615 5.510
verge with increase in the number of samples. This particular v 8 0.15751 0.00558  0.15230 3.420
example illustrates one particular shortcoming of the bounda! u 18 8-%%2‘7“7’ g-ggggg 8-;%;3“21% g-?gé
walk method. As is generally true for other numerical methodg,g u 10 0.15128 000694 0.15230 0670
the boundary walk method is not useful for estimating quantities v 9 0.31048 0.00653  0.30460 1.930

whose absolute values are close to zero in magnitude, withatit

using a considerable number of sample points. This observati@mte Carlo simulation parametens=1,200,000n= 12, s=0.0010,e=0.0015
was also verified by solving the Dirichlet problem on an ellipse

with b/a=2 with the exact solution

u(x,y)=expx)cody)—1 f
for points close to the origin.

Table 5 Solution of a Neumann problem on an ellipse with a
=1, b=2 at O=mu/4

Computed Exact o
r k Value Std. Dev Value % Error - X
0.2 5 1.10627 0.01336 1.10614 0.011 | / L I
0.4 5 1.11961 0.01458 1.12019 0.052 l :
0.6 5 1.00616 0.01778 1.01045 0.425
0.8 7 0.74907 0.03006 0.74902 0.007
Monte Carlo simulation parameteid:=400,000,n= 8, s=0.005,e=0.005 Fig. 5 Wedge-shaped region for the displacement problem
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Table 8 Solution of a displacement problem on a wedge with ¢=m/4 and L=1

$o $1 b2 P3 ¢4 Ps
Computed 0.15906 —0.02256 0.00333 —0.00260 —0.00088 0.00024
'\S/It(cai?n (U) 0.00028 0.00037 0.00038 0.00041 0.00044 0.00048
(D.?g\r/nputed —0.00016 0.00004 0.00011 0.00018 —0.00040 —0.00018
'\élt?fln ©) 0.00015 0.00026 0.00029 0.00034 0.00038 0.00042
ev

Monte Carlo simulation parametens:=200,000,n=8, s=0.0010,e=0.0010

and the corresponding Neumann boundary conditions are imposéxservation that the boundary walk method is not quite accurate in
on the boundary of the body. Results for the ellitga=2 are estimating quantities whose absolute magnitude is “small.”
presented in the Table 5. The boundary walk method is also used to solve the displace-
As seen from Table 5, the number of samples needed to attaient problem on a wedge shaped region. The purpose of this
the required tolerance is more than for the corresponding Dirichlgtoblem is to demonstrate the applicability of the derived equa-
problem with the same geometry. The number of terms neededtitns to solve problems on domains-with non-smooth boundaries.
compute the solution is also more. Both of these effects could hbe wedge is as shown in Fig. 5.
attributed to the fact that the boundary conditions for this Neu- The two sides meeting at the origin are straight line segments
mann problem are more complicated. with included angle¢ and are tangent to the circle with center
The results for the Neumann problem for an ellipse viit  (L,0). Displacements corresponding to unit normal tractions are
=5 with the same exact solution are presented in Table 6. applied on the boundary. Results of the problem with7/4 and
As seen from Table 6, the number of samples needed to achiéve 1l at
the required tolerance, which was relaxed in this case, is about
two and half times the number required withha=2. This can X=r cog6)
again be attributed to the elongated shape of the ellipse with y=r sin(6)

b/a=5 which leads to nonuniform sampling from the boundary. )
for r=0.5 and6=0, are presented next in Table 8.

5.2 Linear Elasticity ~ Heregy, ... ,¢s are the first six terms in seri¢85). Accord-
ing to the tolerance criteria, the first four terms are taken to com-

5.2.1 Displacement ProblemsThe boundary walk method is pute the displacement in thedirection. The computed displace-
used to solve displacement prescribed problems on a thin ellipggent is 0.13724 with a standard deviation of 0.00144. This
and on a wedge. For both these problems, displacement boundgsshpares well with the actual result which is 0.13462. To calcu-
conditions corresponding to unit normal boundary traction are ajgte the displacement in thgdirection, only the first term is
plied. The Poisson’s ratiay, is assumed to be 0.3 and the sheaaken. The exact answer is of course 0.0.
modulus, i, is assumed to be 1.0. The exact solution assuming

u(0,0)=0 andv(0,0)=0 is given by 5.2.2 Traction Problems. The boundary walk method is used
to solve a traction problem on an ellipse. Unit normal traction is
_ (1-v) applied on portionsS; and S, of the boundary whereS;
u= 2u(1+ V)X ={X,y: ml4< 6<3/4m,x,y e} and S,={X,y:5/47r<6
<7/4m,x,yeT'}. (Please refer to Fig. p.
(A=) The solutions obtained using the boundary walk method
v= 2u(l+ y)y' (BWM) are compared with those obtained using the standard

. i . boundary element methoBEM) with linear continuous ele-
The results on an ellipse wittVa=2 are presented in Table 7. o5 The results on an ellipse wittla=2 are presented in

It is seen from Table 7 that more terms are needed as the pofije 9. |t is seen that the results are quite accurate. Note that the
of interest approaches the boundary. It also confirms the preV'Q'al?gest stresseén absolute magnitudeare estimated well in all

the four points under consideration while a large difference be-

Table 9 Solution of a traction problem on an ellipse with a
=1, b=2 at O=m/4
Computed Computed
r k (BWM) Std. Dev  (BEM) % Difference
X 02 o, 4 —0.12643 0.00383 -0.12207 3.572
-— o,y 4 0.84200 0.00479 0.84320 0.142
o oy 2 —0.01762 0.00083 —0.01651 6.723
04 o, 4 —0.09576 0.00421 -0.08726 9.741
oy 4 0.85596  0.00522 0.85403 0.226
oy 3 —0.05833 0.00185 -0.06000 2.783
06 o 5 —0.02090 0.00816 -0.02379 12.148
gy 5 0.86272 0.00974 0.85299 1.141
oy 3 —0.10674 0.00209 —0.11000 2.964
08 o 5 0.07039  0.01155 0.05424 29.775
oy 5 0.85088 0.01370 0.83576 1.809
oy 3 —0.13214 0.00267 —0.13829 4.447
Fig. 6 Problem definition for the traction prescribed problem Monte Carlo simulation parameterd:=1,200,000n= 7, s=0.0050,e=0.0050
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tween the boundary element method and boundary walk methagt using the resources of the Cornell Theory Center, which re-
results is observed when estimating the smallest sfiesbsolute ceives funding from Cornell University, New York State, the Na-
magnitude. For example, the percentage difference betwegn tional Center for Research Resources at the National Institutes of
computed ar =0.8 using the boundary element method and thigealth, the National Science Foundation, the Defense Department
boundary walk method is around 30%. But this stress is of th@odernization program, the United States Department of Agricul-
order of 10% of the maximum stresg(,). Inaccurate estimation ture, and corporate partners.

of minor stress components can occur from other numerical meth-

ods as well, but is of little practical concern as long as the major

components are obtained accurately.
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On the Eshelby’s Inclusion
Problem for Ellipsoids With
Nonuniform Dilatational Gaussian
and Exponential Eigenstrains

P. Sharma‘ Thi§ work investigates the thre_e-dimen.sional e!astic state of inclusi.ons in Whiqh the pre-
scribed stress-free transformation strains or eigenstrains are spatially nonuniform and
distributed either in a Gaussian, or an exponential manner. The prescribed eigenstrain
distributions are taken to be dilatational. Typical research in the micromechanics of
R. Sharma incll_Jsions and inhom_og_eneities has c_iealt, by an_d Ia_rge_, Wi_th spatially uniform eigen-
strains and, to some limited degree, with polynomial distributions. Solutions to Eshelby’s
inclusion problem, where eigenstrains are Gaussian and exponential in nature, do not
exist. Such eigenstrain distributions arise naturally due to highly localized point-source
type heating (typical in electronic chips), due to compositional differences, and those due
to diffusion related mechanisms among others. The current paper provides such a solution
for ellipsoidal shaped inclusions located in an infinite isotropic elastic matrix. It is shown,
similar to the much-discussed uniform eigenstrain problem, that the elastic state is com-
pletely determined in closed form save for some simple one-dimensional integrals that are
evaluated trivially using numerical quadrature. For the specialized case of a spherical
shape, solutions in terms of known functions are derived and numerical results are pre-
sented. The elastic state both within and outside the inclusion is investigated. For the
specific case of a sphere, the elastic strain energies are given in terms of simple formulas.
Some applications of the current work in various areas such as electronics, micromechan-
ics of composites, and material science are also discud$2@!: 10.1115/1.1558078

General Electric Corporate R&D,
Niskayuna, NY 12309

Massachusetts Institute of Technology,
Cambridge, MA 02139

1 Introduction [11] first considered the problem of polynomial distributions of

. . eigenstrains. His work was extended by Moschovidig] and
Since the celebrated work of Eshelfdy-3] on the elastic state - . . L
of inclusions and inhomogeneities, extensive work on this subje,['\éltoschOVIOIIs and Murd13]. In particular, polynomial distribu-

has appeared in various forms. Following M{i#d, we define an I?anssiié)firnetgri\r:jitc:fw“sni:tl\?vr:e:wo?Jnnhdo;?obinu;;e[](algsl—nlgezlrl]r:jgrxvcl)trg the
inclusion to be a bounded volume located in a material with ideﬁ- 9 ’

tical material properties but containing a finite stress-free transf%?-gegﬂé?y Srggg;ag%;ﬁr;ﬁztimvsyﬁ%gcI;'(fvitgg ;ga;igé;?;%'
mation strain(or eigenstraipwithin its domain. The value of the 9 y P : p

eigenstrain is null outside the inclusion domain. An inhomogen(ejlscussmn on the use of polynomial distributions of eigenstrains

ity is defined as a bounded volume with material properties diﬁ_lothe solution of interaction problems of inhomogeneities. Poly-

) - : . mial eigenstrains in anisotropic materials were investigated by
ferent than those of the surrounding material or matrix. Vano%saro and Barneff17] and Mura and Kinoshit&18]
examples Of natura_lly oceurring elggnstrams are thqse due to t.herApart from the aforementioned works severall other contribu-
mal expansion, lattice parameter mismatch, inelastic deformathg '

. : " ; ; ts have extended Eshelby’s original work on inclusions and in-
swelling strain, compositional differences, magnetomechanlcal,|;'|>6mOgeneities Furuhashi et f19], Ru and Schiavon20], and
electromechanical strains, etc. ' ) '

The followi hs h ided hensi Zhong and Meguid21], among others have considered slipping
_1he fotk?W'nQ mono%rap N fa_velprpw € gon}ptredensglle rfh'_clusions where the matrix-inclusion bonding is imperfect. Of
\l\//lli\;vas[Z] Nim;rm:gefgﬁ go'[%(]: uasé?in:/lgrkmr/eaig P?g;iozrﬁarticular technological interests are coated inclusions, which
' J f ', have been studied by Walpdl22] who presents a simple approxi-
[6]. Some other collections of work include: Weng et[&l} and y pdi22] P pie app

; . . mate model for infinitesimally thin coatings. His work is extended
Bilby et al. [8]: The review artlc_les by Mura_ et d9] and Mura and refined by others such as Weng et[aB], Cherkaoui et al.
[10] also provide a good overview along with some more rece

p ; fth ; t th i i 4], and others. Ry25] has focused on providing solution for
references. In view of the existence of these detailed reviews, @y sions of arbitrary shape. Solutions to inclusion problems

elaborate survey of eigenstrain or inclusion problems is redufzye also been extended to piezoelectric medium; e.g., [P8la
dant. However, to establish context, some limited and relevagf, 27, Deng and Meguid28], and Mikata[29] are some recent
literature is discussed below. _ _ references. Chi(i30] provided the solution to the problem of a
_A somewhat limited amount of analytical work on nonuniformyaajjelepiped inclusion containing uniform eigenstrains, while re-
eigenstrains has focused on polynomial distributions. Sendeclggnﬂy Nozaki and Tayf31] have solved the more general prob-
lem of a polyhedral inclusion with uniform eigenstrains. Other

1To whom correspondence should be addressed. e-mail: sharma@crd.ge.co ; i i i i i
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF "tontributions abound in this active area of research which both

MECHANICAL ENGINEERSfor publication in the ASME GURNAL OF APPLIEDME-  F€lévance and brevity considerations preclude us from citing.
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 15, Presently, no semianalytical or analytical solutions to the non-
2002; final revision, Sept. 27, 2002. Associate Editor: H. Gao. Discussion on tpgiform eigenstrain problem exiéivhere the distribution is not of

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenb% : . P . .
Mechanical and Environmental Engineering University of California—Santa Barbara, Iynomlal naturh The polynomlal dIStI’IbUtIOrQaS evidenced by

Santa Barbara, CA 931065070, and will be accepted until four months after fifekPressions provided by MOSChQVid]$2] and noted by Rodin
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. and Hwang[16]) is extremely tedious to implement even for a
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second degree polynomial and thus, practically speaking, provides
only a limited departure from the uniformly eigenstrained inclu-
sion problem. On the other hand, several problems in the physics
and mechanics of materials naturally give rise to eigenstrain dis-
tributions which are Gaussian and exponential in nature. The one-
dimensional equivalent of these distributions can be expressed
parametrically(in terms of a varying parametérmnd constanp)

as

Gaussian: pe (1a)

Exponential: pe~! (1b)

In this article, we endeavor to provide both the interior and exte-
rior solution to the elastic state of ellipsoidal inclusions with pre- ) ] ] ) o )
scribed Gaussian or exponential dilatational eigenstrains, whé&jé- 1 An inclusion £ confined in an infinite linear elastic me-
the parametet in Equations(lab) represents an arbitrary dis-4Um D- The origin of the coordinate system is at the center of
L . . . ! . the inclusion.

tance within the ellipsoidal inclusion with respect to the centroid
of the inclusion domain.

The solution is reduced to a point where only a trivial numeri-
cal evaluation of a one-dimensional integral is required for tH2 Problem Formulation
general ellipsoidmuch like the case for the classic uniform eigen-

Consider an infinite linear elastic materi@), defined by the
urth-order elasticity tensd, containing an inclusiof(}) with a
escribed eigenstraire*, not necessarily uniform(Fig. 1).
helby showed that the constrained strain or final strain could be
expressed in integral form as followd,,2,4):

ematical functionsis derived and numerical results are presentefg
for the physically meaningful dilatational case. The elastic stra
energy of the spherical inclusion is evaluated and reduced
simple formulas involving one-dimensional integrals.

Several applications are foreseen for this work:

1. Electronic chips, in particular various kinds of FE{Esg., sﬁ-(x):— lf Cuimne r( X[ Gik 1 (X,X") + G i (x,x) ]dX’
MESFETS, are characterized by extremely localized point-source 2 Jq ' '
type transient heating. Thus, temperature at some source(pbint (2)

directions. Such a nonuniform temperature distribution leads Gere: Gii(X:X') is the fundamental solution to the Kelvin's prob-
N ; o emp . f m of a point load in an infinite solid. It is given kfor isotropic
thermal eigenstrains distributed in a Gaussian or exponential fa Sterials:

power generationis a maximum and falls of very rapidly in all
&
ion. The localized mechanical deformation of electronic structures

can have a significant influence on the electronic properties. A . 1
recent paper by Johnson and Freli8d] is a useful reference on Gij(x,x") = — o
> . . i 16mu(1—v)|x—x’|
the effect of mechanical strain on the electronic properties of
semiconducting materials. Knowledge of the elastic state by itself (X=X ) (X —xj’)
is also desirable to assess propensity of the electronic structure to x| (3—4v)s;+ W (3)

mechanical damage.

2. Eigenstrains can often arise due to diffusion of materialklere,u is the shear modulus;is the Poisson’s ratio and|; is the
compositional changes, etc. Such eigenstrains obey the diffusiéfonecker’s delta. For uniform eigenstrains in ellipsoids, the re-
differential equation often leading to Gaussian or in some casgglting constrained straifEq. (2)) is also uniform and can be
exponential distributions. related to the eigenstrain via the famous Eshelby tensor:

3. Applications are also envisaged in transient problems where c_ *
the final eigenstrain is uniform, but the transient state is nonuni- eij = Siju (.8 /3y)ejj . )
form and can be approximated by exponential eigenstrain distEguation(4) was one of the most important results of Eshelby’s
butions. original work,[1]. Eshelby’s tensor is only a function of the ma-

4. Both the exponential and Gaussian distributions are vetyx Poisson’s ratio and the ellipsoidal aspect ratias/§;). The
versatile in the sense that by introducing the controlling cong&tant/arious components of Eshelby’s tensor are well documented by
in the exponentésee Section 2, Eq¢ba—d), one can tailor these Mura[4] for the general ellipsoid, for various specific subsets of
distributions to mimic a variety of nonuniform distributions.the ellipsoid(i.e., elliptic cylinder, flat ellipsoid, etg. as well as
Needless to say, several mathematical functions can be expressiter shapes such as the parallelepiped.
as linear combination of the exponential function and thus the Having established appropriate context, we formulate our prob-
solution to the exponentially distributed eigenstrain automaticallgm as follows: Consider an ellipsoidal inclusiof}, perfectly
provides a solution to a whole class of eigenstrain distributionshonded to the infinite matrixD) in which it is located(Fig. 1).

Then we seek the constrained strain and hence the complete stress

. In Section 2, Eshelby's formallsm is revisited and _bnefly reé,tate, both inside and outside the inclusion domain, given the fol-
viewed. The central problem is formulated. The solution for thl%

general ellipsoid is discussed in Section 3 while a specializedNIng eigenstrain distributions:

closed-form derivation is made for a spherical inclusion in Section o . XpXp

4. Numerical results for the spherical inclusion are also presented Ellipsoidal Domain) : ——=<1

and discussed. A short note on the calculation of the elastic stain P

energy of a spherical inclusion with Gaussian/exponential eigen- Gaussian:ef(x):8__e—k2<xpxp/a,%> xeQ (54)
strain is provided in Section 5, followed by closing remarks in ! .

Section 6. =0 xgQ) (5b)
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- _ . 0.—(k /a2)
Exponential: &j (x)=¢jje (kvxpxp/ap)  y e () (50) ‘I'ij(x)=f x—x'|sf (X )dx’ @
=0 x&Q (50) “
We will consider only the case of dilatational eigenstrains, i.e., ‘Di'(X):f 1 eX (X )dx'. @8)
ef =%, . Here,a;, are the semiaxes of the ellipsoid and con- . alx=x]71

ventional summation rules _apply unless otherwise noted. A re'GeneraIIy, an assumption of uniformity of the eigenstraih,

. h . 4G 4], and is taken ide the integrals in EG®, (8), th
value as it lowercase counterpart. To clarify the notation, the ex: ac_ie[ ], and is take outs de the tegrals @ (8) thus

. . . . . . . . . 2
ponent in the Gaussian distribution is written explicitly a¥al  the evaluation of harmonic and biharmonic potentials of the inclu-
+x3/a;+x3/a3. In the specific case of a sphere, both distribusion shape. For the ellipsoidal inclusion with uniform eigenstrains,
tions depend only on the radial distance from the center of thige final result is embodied in E¢).
inclusion. £°, is simply a normalizing space-independent strain For the dilatational cas@vhere the tensoe? in Egs. (5a,b) is

tensor. The parametey, not present in the earlier definitigigs. replaced bygogij), we can modify Eq(6) to be written as
(1a,b) has been introduced to generalize the distributions further.

As an illustration the spatial variation of the Gaussian distribution S (X)= — 1+v &0 ©)
along thex,-axis of the sphere is shown in Fig(&lthough, in the 1 4m(1l-v) A
highly symmeterized case of a sphere, the distribution is identica] . - ;
algn y al): diametrical directior)sTFLe reader will note that ak cﬁhls follows directly from the general relations between the har-
9 : : . > monic and biharmonic potentialg33—35,
—0, we approach the uniform eigenstrain problem. This fact
should serve as a check on our results. Wi k(X)) =2Dj;(X) (10)
Wi i (X) =2y 1 (X) = — 8mre i (X)
3 General Solution for Ellipsoids With Dilatational for xe O
Eigenstrains 0 forxeQ
In this section, the general solution for ellipsoids is presented ) ] ) '
for the case when the eigenstrains are dilatational. Most fréb€ Yet unknown harmonic potential tertm Eq. (8)) can be

quently, the naturally occurring and physically meaningful eigefritten explicitly as
strains(such as those due to thermal, diffusional, or compositional

g 9 - kz(x;nx;n/af,l)
gradients, et¢.are dilatational in nature. Gaussian:® ;;(X)= — — - dx
M (?Xi (9)(]
Q

Using Eq.(3) in Eq. (2) one can obtain the final solution &), Ix=x']
1 11a
g (x)= m[\ykl,klij =20 yyij = 2(1=0) (P kj (112)
v P e~ KV (xxi/ay,
+(I)jk,ki)]- (6) Exponentlalz (I)'ij(X)Z (9—)(] 19_)(] f j f de’.
Here, ¢y and @ are biharmonic and harmonic potentials of the Q
ellipsoid. They are given as (11b)
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At this point we appeal to a generalized theorem proven by Y(312k%r%a?)

Chandrasekhdi35] and presented in a slightly different form by i B (15)
Neutsch[36] to reduce Eqs(11a,b) to simpler integrals. Details
of the theorem, its application to our case and the detailed deriva- 2y(4kr/a)
tion are recorded in Appendix A. But first, the differentiation is Ei=—a5—, (150)
carried out within the integral itse(Appendix A). Upon reduction K'r
of the integrals, the final results obtained &@pendix A 2y(3kr/a)
Gaussian:CDVij(x):Zwa1a2a3[(2k261)xixj—Gzéij] 27 K33 (15d)
(12a)
) X&)
Exponential: @ j;(x) =2maja,as[ (KE;)XjX; — E; ;.
(120) ¥(5/2k?)
H i ; Gi=—355 (15€)
ere,{G,,G,} and{E,,E,} will be called theG and theE inte- K>r
grals, respectively, and are expressed as )
v(3/2k?)
= 1 e K2 0mxm aly) Gzz—k"Tr’ (15f)
Glzf > ) ds (13a)
v \auts] (al+s)(azts)(a3+s) »
y(4K)
1 &0 a8y =T (1)
G,= ds 13
2 fx ay+s/ (ai+s)(ai+s)(a3+s) ) 273K 1)
2= 3,3
. k 1 2 efk\/xmxm/af,| k°r
El:f > ds The function,y(n,x) is the incomplete gamma function »ff
A XX \@m TS \/(a§+ s)(a§+ s)(a§+ S) ordern. At a very quick glance, it may erroneously appear that the
2 interior E and G integrals are singular at the origin; however, a
M 3 closer look will indicate that as— 0, these integrals steadily ap-
(13c) proach a constant valu@s will be indicated in the numerical
=1 ek " results, Figs. 3_»—)6 _ o
52:J 5 ds.  (13d) The stress-field due to the inclusion is given by
\ \awts/(ai+s)(az+s)(az+s)
L o . aij(})=Cjjulefi(x) —&f; (¥)], xeQ
The factorh is ubiquitous in ellipsoid potential-related problems (16)
(e.g.,[31]) and is defined as cijk,gﬁ.(x), xe& Q)
A=0 xeQ (14a) As an illustration, numerical results for the stress components
X along thex,-axis are presented in Fig. 3 for the Gaussian distri-
[)\>0 1— %:0} xe . (14p) bution (k=1). In what follows the Poisson ratio for the matrix is
ai+a taken to ber=0.3. The stresses have been normalized with re-

We note in passing that a consequence of @gab) is the spect to the product of matrix Young's modulls,and the mag-

presence of a deviatoric component in the second derivative of fhgide of the dilatational eigenstraia®. Unlike the classical case
harmonic potential. Therefore, even a purely dilating inclusioff uniform eigenstrain problem, the interior stress state is nonuni-
will experience(as intuitive constrained shear strains in certairform. As expected, there is a discontinuity in the normal stress
directions; an effect not seen in the solution to uniformly dilatin§oMponents across the inclusion-matrix interface, adequately cap-
inclusion problem[1]. ured by our solutlon_smce exterior solutions is explicitly in-
Obviously, the solution to this fairly complicated problem iluded. Along thex;-axis, the shear stresses are zero. Also, out-
now simply reduced to the evaluation of the one-dimensighal Side the inclusion, the stress components asymptotically decay,
and G integrals. This is similar to the classic uniform eigenstraifus satisfying the zero traction boundary conditions at infinity for
problem where the final solution is reduced to the evaluation t€ inclusion problem.
certain elliptic integrals. For the general ellipsoid, theand G Figure 4 plots the variation of the stress components along the
integrals anc\ have to be evaluated numerically, although, the#"€ X1=Xz, X3=0. In this instance, there is a nonzero shear stress
simple form makes it trivialespecially in typical mathematical @12, Which vanishes at the center of the inclusi@ue to the
packages such as MATHEMATICA and MATLABFor the spe- spherical symmetry of the eigenstrain dI.StI’Ibu).IGImd at infinity.
cific case of a sphere, further reduction is possible and is tacki¥igte that the continuity ofr1, across the inclusion boundary is a
in the next section. It should be noted that i@nd G integrals consequence of the dilatational nature of the prescribed eigen-
depend on\ and hence, Eq412)—(14) compactly represent the strains; an eigenstrain distribution with a deviatoric component

solution to the elastic state both in the interior and the exterior ¥fll cause a jump in the shear stresses at the inclusion boundary.
the ellipsoidal inclusion. In the limit of k—0 (corresponding to a homogeneous distri-

bution of eigenstrain in the inclusiprthe results in Figs. 3 and 4
collapse into a single curvéFig. 5), and we recover Eshelby’s
. classical solution to the inclusion problem for a sphere. This con-
4 Closed-Form Solution for a Sphere stitutes a useful validation of our results. We further explore the
In this section, our results are specialized for the sphericasymptotic limit of our solution in Fig. 6, where the stress com-
shape, which permits simple closed-form expressions in termspsfnento;; for various values ok is shown. For small values &f
known mathematical functions. Further details are in Appendix B)e eigenstrain is nearly uniform and the classical uniform eigen-

but the final results are quoted as follows: strain solution is recovered. This is rather interesting since our
xe): expressiongin terms of the incomplete gamma functjoare of
22,2 completely different form than those derived by Eshelbyand
_ Y(5/2k°r*/a%) (153) Mura [4]. Nevertheless, our expressions are equivalent to those
! Kor® ' presented by Eshelby-Mura for the uniform eigenstrain ¢ase
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Fig. 3 Nonzero components of the stress tensor along the X,-axis of a spherical
inclusion loaded with dilatational Gaussian eigenstrains (k=1)

k—0). Thus, in addition to solving the nonuniform Gaussiarthe reduction of the overall problem to simple one-dimensional

exponential eigenstrain problem, we have also recovered a nowgegrals(Egs. (13a—d)) makes such a calculation simple. How-

form of a pre-existing classical solution. ever, for the case of a spherical inclusion, fairly simple expres-
sions can be derived and are presented in this section.

5 Elastic Strain Energy of a Sphere With Gaussiah ~ The elastic strain energy can be written as

Exponential Eigenstrains

1
W=~ i S(X)—ef dD. 17
For the general case of an ellipsoidal inclusion, evaluation of 2 f f f 7ij 0Lz (x) ~ e ()] (47
the elastic strain energy can only proceed numerically, although, D
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(k=1)
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Integrating by parts, incorporating the equilibrium conditions, anélfter some tedious algebra we can write the final expressions as
setting the tractions zero at the boundary of the bbg¥q. (17)

can be reduced to Gaussian: W9=3K e[ W§—3s°WJ] (19%)
W 1 ot (0d0 15 Exponential: We= 3K [ W5 —3°W5] (19%)
=—= (X)) eX (x)dQ. ] N
2 7ij ()8} (X) (18) Here,K is the bulk modulus and theW quantities” are expressed
Q as
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Fig. 6 Interior solution for o, along the x;-axis of a spherical inclusion, as a
function of k, due to Gaussian eigenstrains
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3

2m(1+v) [ a XiXi\™T [ Xy Xo X3
W=-3a ) ° P= a2 flaraa) ™ @2
3 ) 5 k°r? 3 3 Kk°r? ey the Newtonian potential then is expressed as
ol N2 N2z )f® r L
v S|l1-—=—
(20a) B(x)= * 1- XiX; mZ ajts
o y(3/2.2) N al+s/ =6 2°"nl(n+m)!/m!
ma” Yy y
N (200) X[af+sii]” Ay @X, agXs|ds
o bm(1+y) [ a)? al Jx dx| \aj+s’az+s’ai+s/ A 23)
31wy ke Al 1
o |k SI J@i+s)@zts)(@g+s)
x fo Y 4'§ _37(33 € dr (20c) For the specialized case where the density depends only on the
absolute distance from the centroid of the ellipsoid, it can be
mady(3,%) shown using either Chandarsekti8B] or Neutsch[34] that Eq.
WS:T (20d)  (23) reduces to
x XiXi
6 Closing Remarks T, ,(ai2+5)p(t— #)dt

ds.

In the present work, the elastic state of inclusions undergoing A (24)
dilatational nonuniform Gaussian and exponential eigenstrains
was solved. Interior and exterior elastic solutions for the generalThe interior integral in Eq(24) is straightforward to evaluate
ellipsoid were reduced to simple one-dimensional integrals anafor the Gaussian and exponential distributions. Simple twice-
gous to the classical uniform eigenstrain problem. Specific closaglfferentiation within the integral sign leads directly to Egs.
form solutions to the elastic state were presented for a spheri¢gPa—b) and(13a—d).
inclusion together with an expression for the elastic strain energy.
To the best of the authors’ knowledge, such solutions appear for .
the first time. Appendix B

The present work directly allows the solution to several practi- b ivation of Egs. (15a-h). Using, a,=a,=az=a, the E
cal p_roblems, namely, nonuniform h_eatlng, d_n‘fugon related a%dG integrals can be expressed as
transient problems where the transient distributions are nonuni-

(I)(X) = Walazagf
N

form, etc. Further, using the controlling parametera variety of % o= kr2l(a%+s)
nonuniformity can be introduced. In the limk— 0, the classical Glzf T,Z—ds, (259)
uniform eigenstrain solution is recovered. y (87Fs)

Within the boundaries of the posed problem, our solution is v - K22 (a2 +s)
exact, however, the present work has two main restrictive fea- — f e

; ; ; oo G 2 ooz ds (250)

tures: (i) The eigenstrains are of dilatational nature. Insofar as \ (a“+s)
inclusion problems are concernéals opposed to inhomogeneity L
problemg, there are several sources of eigenstrains that are pre- x 1 g krNa’+s
dominantly dilatational(e.g., thermal strains, swelling strains, Elzf de& (250)
etc). However, future work is anticipated where this restriction is A
removed. Such an effort will entail the calculation of the biharo- o a—kr/iVaZ+s
mic potential over an ellipsoidal volume for given nonuniform E,= e ds. (25d)
eigenstrains(ii) We considered two main types of spatial distri- 2 N (aers)s;2 '

butions: Gaussian and exponential. In both cases, the spatial varia- o )
tion is based solely upon the absolute distance from the cenfdgrer is the radial distance from the center of the sphere, i.e.,
(i.e., there is no angular variatipnAgain, for many naturally XiXi- Using Gradshteyn et aﬂ38_] and the fact that for a sphere,
occurring eigenstrains, such a restriction does not seem to be the cubic equation in Eq14b) yields, \=r?—a” in the exterior,

reasonable. one can easily recover Egd.5a—h).
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Recent advances in smart structures technology have lead to a resurgence of interest in

C. 0. Horgan piezoelectricity, and in particular, in the solution of fundamental boundary value prob-
e-mail: coh8p@virginia.edu lems. In this paper, we develop an analytic solution to the axisymmetric problem of an
Fellow ASME infinitely long, radially polarized, radially orthotropic piezoelectric hollow circular cyl-

inder rotating about its axis at constant angular velocity. The cylinder is subjected to
Structural and Solid Mechanics Program, uniform internal pressure, or a constant potential difference between its inner and outer
Department of Civil Engineering, surfaces, or both. An analytic solution to the governing equilibrium equations (a coupled
University of Virginia, system of second-order ordinary differential equations) is obtained. On application of the

Charlottesville, VA 22904 boundary conditions, the problem is reduced to solving a system of linear algebraic

equations. The stress distribution in the tube is obtained numerically for a specific piezo-
ceramic of technological interest, namely PZT-4. For the special problem of a uniformly
rotating solid cylinder with traction-free surface and zero applied electric charge, explicit
closed-form solutions are obtained. It is shown that for certain piezoelectric solids, stress
singularities at the origin can occur analogous to those occurring in the purely mechani-
cal problem for radially orthotropic elastic material§DOI: 10.1115/1.1572900

1 Introduction electric materials, namely radially polarized materials. One of the

In recent years there has been a resurgence of interest in pie%r_ly papers to explore a radially polarized cylindrical medium

electricity, motivated by advances in smart structures technolo AS that of Adelman, Stavsky, and Semi\l. Like many of the|r.
Classic reference works on the subject include those of Tierstgifdecessors, the authors [6f were interested in the dynamic
[1], Berlincourt[2], Berlincourt et al.[3], and Jaffe et al[4]. problem. Some of the issues raised 9 were further explorediln
While [1] is primarily concerned with waves and oscillations, thiéhe book by Parton and Kudryavtséi0]. Recent papers which
book also contains a concise summary of the basic equationstié@t some static analyses of radially polarized media indllitie
static and dynamic linear piezoelectricity. The piezoelectric phd4l. All of these papers use infinite series solutions for the gov-
nomenon has been exploited for decades. Classic piezoelec@figing equations. The present authors have developed an alternate
devices include microphones and record players. More recent aptution technique for such problems|its].

plications have focussed on improving existing devices and trans-Horgan and Baxtef16] formulated an analytic solution tech-
forming them into “smart structures.” For example, piezoelectrigique for the mechanical problem of an infinitely long, hollow
actuatorscan be used to modify the shape of an airfoil, therebgircular cylinder composed of a cylindrically anisotropic homoge-
reducing transverse vorticefs], or to maintain proper tension neous linearly elastic material and rotating about its axis at con-
with overhead electrical wires on a locomotive pantogréh,In  stant angular velocity. In the present paper, we consider piezoelec-
addition to being used as actuators, which respond to changesrig analogs of the problems investigated[ir6]. We consider a

an electric field by producing mechanical strain, they can also B&ating hollow circular cylinder composed of a radially polarized
used assensorswhich respond to a mechanical strain by producyjingrically anisotropic piezoelectric material, e.g., PZT-4 or
ing an electrical signal. One notable civil engineering applicatiof,Tio, | and subjected to internal pressure, together with a poten-
of piezoelectric sensors is in structural health monitorfid, A yia| difference induced by electrodes attached to the inner and

change in the "?Ve' of strain will produce an electric charge a ter surfaces of the cylinder. An analytic solution technique is
trigger sensors in the structure. d

! . - . Oleveloped for the electromechanical problem, where stresses are
Piezoelectric polycrystalline materials are manufacture

through a process of poling, which involves heating to high ten[i)_roduced by the combined effects of rotation internal pressure and

peratures under the influence of an electric figdd As a result, voltage d!ﬁerence. ) . . N
dipoles are reoriented, and point roughly in the poling direction, N S€ction 2, we give a brief summary of the basic constitutive
although their precise arrangement is still somewhat randoffluations for linear piezoelectric solids. In Section 3, these equa-
Upon application of a voltage, electric forces cause the dipoles8ns are specialized to cylindrical polar coordinates and the axi-
straighten out in the direction of their general inclination, whicgymmetric problem described above is formulated. The governing
causes mechanical strain. Anisotropy is essential for the phend@guilibrium equations in polar form are shown to reduce to a
enon to occur. coupled system of second-order differential equations for the ra-
We are concerned in this paper with special classes of pieatial displacement and electric potential field. These differential
equations are solved analytically, and on applying three different
Contributed by the Applied Mechanics Division oHE AMERICAN SoclETY oF ~ sets of boundary conditions an analytic solution method for
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ment of Mechanical and Environmental Engineering, University of CaIifornia—San@taﬁng solid cylinder with traction-free surface and zero applied
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final publication of the paper itself in the ASME)URNAL OF APPLIED MECHAN- electric charge. For this problem, explicit closed-form solutions

ICS. are obtained. It is shown that stress singularities at the origin can
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occur for certain piezoelectric materials analogous to those occur-
ring in the purely mechanical problem for radially orthotropic
elastic materials.

2 Basic Constitutive Equations

The governing constitutive equatiofsee, e.g.[1,2]) for a ho-
mogeneous anisotropic piezoelectric solid can be written as

8|:Sij0'j+dmiEm, (1)
Dn=0dmioi + €mEx, )

where the well-known single suffix notation is used for stress and
strain, i.e.,i,j run from 1:6,m,k run from 1:3, and the usual
summation convention is used. In the aboseand o; are the
mechanical strain and stress, respectivglyare the elastic com-
pliances,D,, is the electric displacement vect@lso referred to

as the charge densjtyand E, the electric field. Theal,,; are the
piezoelectric moduli, in units of Coulombs/Newt¢@/N), which
relate the electrical and mechanical effects. Ejg denote the
dielectric permittivity constants at constant stress, in units of

Farads/mete(F/m). An alternate, inverted form of the governing \ Electrodes

equationgsee, e.g.[2]) is

H<

Oi=Cjj&i—€emE (3) Fig. 1 Hollow circular cylinder subject to uniform internal
wE i pressure p; and applied voltage V, rotating with constant ve-
Dm=€mi6i + emiE- (4) locity o

The d,,; have been replaced k®,;, which are also piezoelec-
tric moduli, whose units are Cfmand the elastic compllance§
have been replaced by elastic stiffnessgs The emk denote the and
dielectric permittivity constants at constant strain. Their units are

the same as those ef,, but their values are different. We also E,=— d_¢ (10)
note thatk,, can be written in terms of the electric potentiabs dr
=-Vo. (5) whereu,(r) is the radial displacement arfi= ¢(r) is the electric
potential, we write(8) as
In this paper, we will speC|aI|ze our general analy3|s to the
piezoceramic PZT-4a lead zirconium titanajewhich is widely _ ﬂ+ &Jr d_¢ 11
used in smart materials and structures technolsgg, e.9.,7,8]). Trr = Ca3 dr Ci3 r €33 dr’ (11)
3 Rotating Hollow Circular Cylinder du u d¢
.g ) y . , To0=Cra7g ——+Cy— r+e31dr (12)
We consider a hollow circular cylindea<r<b subjected to
axisymmetric mechanical and electrical loading on its lateral sur- u, du, de
face (See F|g J. Df: ealT + e33W - 633W . (13)

The detailed boundary conditions will be given below. The cyl-
inder is rotating about its axis at constant angular velaeignd is The elastic constants am;,Cc3,C11, the piezoelectric con-
assumed to be sufficiently long so that end effects need not &igints aree,;, e3;, and e,; is the dielectric permittivity at con-
considered. In cylindrical polar coordinatésee, e.g.[10]), the  stant strainthe superscrip8 has been droppgdA discussion of
governing equations, in the absence of body forces, for the aure mechanical anisotropy arising in consideration of cylindrically

symmetric stress and electric displacement fields are orthotropic elastic materials may be found[it6]. Such anisot-
do 1 ropy arises, for example, in carbon fibers during the manufacture
Tt 20y — 0 pg) + pgw?r =0, (6) of composites and in the casting of metals.
dr r When (11)—(13) are used in6), (7), we obtain
db, 1 d?u du d?¢
ar ) r2033W+rc33a—cllu+r2e33w+r(e33— e g,
where D, is the radial component of the electric displacement +pawri=0 (14)
vector andpd is the constant material density.
The constitutive Eqs(3), (4) for the piezoelectric material and
when specialized to cylindrically orthotropic materials, polarized d2u du d2¢ b
in the radial direction, may be written #&see, e.g.[10]) r2e33w+r(es3+ ) §_r2633w_r633ﬁ =0, (15)

o,=C +c —essE,, . . .
AR LR R respectively, where the subscript arhas been dropped for sim-

99=C138, T C11€ g— €31E, , (8) plicity. Equations(14), (15) constitute a coupled system of linear
second-order ordinary differential equations forand ¢. It is
Dr=esie 4t €gse, + €33F, - useful to nondimensionalize the equations. This may be accom-
Since plished by dividing(14) by c;5 and(15) by e;5. Then, if we set
du, u, Ci1
-— ' = —=a, 16
g dr e fe ©) Ca3 (16)
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e_u:ﬁ 17) u”’+pu’—yd"=0, (30)

ey where the prime denotes differentiation with respect.to
c On writing (29), (30) in differential operator form, one can
Ssfss_ (18) readily uncouple this system into a single fourth-order equation

€5 ' for u or ®. In this way, one can obtain the solution pair
and define a new potential function as (Bwi— »?) (Bw,— w?d)
u(t)= #Ae‘”@r #Be‘“zt— EC+aK2e3‘,
q)_ess (19) (01~ a) (03— a) a
Caz (31)
we may Wr|te(14)’ (15) as CI)(t)=Ae“’1t+ Bev2'+ Ct+ D+aKleBt, (32)
du  du o2 do  w’r® where
2 _ 2 _ _ —
r dr2+rdr au+r ar +r(1-5) ar +pq o 0, Fray
(20) w1 == Ty (33)
d2u du d2® do i
2= +1(1+B) —— —r2y—— — T y— =0. 1) The constant&,,K, are given by
dr dr dr dr N
. . . Q1+ 3B) vQ)
The constantsy, 8, y are dimensionless parameters. While Ki=— , Ky=— . (34)
depends only on the elastic constants #hdn the piezoelectric (B*+ay=9-9y) (B +ay—9-9y)

constants, the parameterinvolves all three of the radial elastic, ynere it is assumed thg@?+ ay—9—9y#0 andA,B,C,D are
piezoelectric, and dielectric permittivity constants and thus Pr9hitrary constants. Froif83) we have
vides a measure of the degree of piezoelectric coupling. As shown
in Horgan and Baxtef16], the constanty can also be written as ) ) BP—
(1)1_ o= (1)2_ o=

(35)

— 1+vy
E€
a=—, (22) and it is assumed thg@@?+ a.

E Sincet=1In p, we have thus established that the solution pair of
where E,,E, denote the Young’s moduli in the azimuthal anoEqS'(ZS)’ (26) can be written as
radial directions, respectively. When>1, an elastic material is (Bwi— ) (Bw,— w3) B
circumferentially orthotropicand whena <1, the material iga- u= ————Ap®1+ = Bp“2— —C+aKyp®,
dially orthotropic In piezoelectric materials, other factors contrib- (i~ a) (w3~ a) @
ute to the nature of the orthotropy. (36)

We also nondimensionalize the independent variable. For the ®=Ap“1+Bp“2+C In p+D +akK,p°. (37)

hollow cylinder of concern witta<r<b, we set ) ) ) o
We also require expressions for the nondimensionalized stresses,

p= r (23) which we obtain from(11), (12), and(19). Thus
) Urra_du+5u+dfb a8
and cm dp °p T dp (38)
° du u do
n=_, (24) 096a=5_+a_+ e 39
? C33 dp p ﬁ dp ! ( )

so that k=p=< 7. On reevaluating all derivatives using the chaifhere the new dimensionless parametés given by
rule, we rewrite(14), (15) as

C
d?u  du 420 dd  pyw? PR (40)

2 4+ p——aUut+p’i——s+ -B)—+ 3p3= a3’
P TP, Tt g2 p(1=p) dp "o 2P 0, 33
(25) Note thats depends only on thelastic constants.
) On substituting the expressions ioand® from (36), (37) into

d<u du d’® do (39), (39), we
2__ Y Sl , (39), we get
P dpz+p(1+ﬁ)dp P07 P, 0, (26)

Oy o1 ,Bwi-i- 5ﬁw1—5w§—awl 1
whereu=u(p), ®=®(p). retake L3 P 2
It is convenient to define a new dimensionless constant as % !
[ 2 2
2.2 Bws+ 0Bw,— dwr,—aw,)| | 1
pgw-a + wy—1 -
Q= . (27) Blp ( o a
Cs3
which allows us to rewrité25) as ic p_l(l— 73 §+p2(3K2+ SK,+3Ky), (A1)
2d2u+ du . 2d2®+ L de)+Q 5o .
P dp? pdp adurp dp? p(L=P) dp ap==0. T _ 1 5ﬁwi—5wi—awi+ﬂwi 1
(28) C33 B wi— o a
We use the change of variablps- €' to rewrite (28), (26) as a 2 o3 3
system with constant coefficients. The final coupled system of +B|pezt OBw 5“’; awyt Bz |1 (42)
ordinary differential equations becomes Wy a
u"—au+®"—Bd’'=—QNae™, (29) +p?(36K,+ aK,+ 38K ;). (43)
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It is convenient to define a new dimensionless poterdtialas Bwi+ 8Bw,— dw2— aw,
® wi—a
(I)l:g’ (44) ,Bwi-i- 5Bwl—5w§—aw1
my={ 7“1 * 2 : (54)
and so(37) can be written as @1
1
O, =A 1+|3 21+CI 1+D1+K 5. (45 1
= 1) — w2) — — (0}
1=A(p*) 7 +B(p??) 7 +C(Inp) —+D —+Kyp®. (45) U
2 2
+ 6Bwy— dws5—
We will examine three sets of boundary conditions, referred to oz 'szz W2~ W2
henceforth as Cases 1, 2, and 3. In Case 1 the cylinder is subjected Wy~
to a uniform internal pressure, zero electric potential difference Bwi+ SBw,— dwi—aw,
across the cylindrical annulus, and free mechanical boundary con- m,={ 7“2°1 > ‘ (55)
ditions on the outer surface. Thus the rotating tube can be viewed Wy«
as acting as aensorin this case. In Case 2, we impose free 1
mechanical boundary conditions on both internal and external sur- °
faces. However, there is a uniform potential difference prescribed \ 7 J
across the annulus. Physically, such a state could be achieved by ( 58 )
placing electrodes on the inner and outer surfaces of the cylinder, 1-—
[10]. In this case, the rotating tube acts asamtuator For con- «
venience, we will take the potential on the outer surface to be B
zero, and the potential on the inner surface to be a nonzero con- mz= 71— e (56)
stant. Case 3 is the combined loading case, a superposition of
Cases 1 and 2. The boundary conditions for each case can be 0
written as follows:
\ In 7 )
Orr Ty 0
Case 1-0—33(1):—&. C—%(n):O, ®1(1)=0, ®y(7)=0, 0
(46) my=3 4 (57)
1

. O _ Orr _ e _
Case 2: 0_33(1)_0' 0_33(77)_0' ®1(1)=¢, P1(n)=0, Each set of boundary conditions determines the form of the
(47) column vectorb on the right side in(52). Thusb,, b,, andb,
correspond to Cases 1, 2, and 3, respectively:

g, g, J—
Case 3:—(1)=—p,_(7)=0, ®1(1)=¢, P1(7)=0, ~ 173Ky K- 3Ky
33 33 (—3K,—6K,—3K,) 7
(48) by = K, , (58)
where the constantp; and E are the prescribed dimensionless -K;7°
pressure and potential, respectively. It is convenient to normalize

by takingp; =1, ¢=1, and so the boundary conditiof#6)—(48) ~3Kam Ko 3K, )
will henceforth be written as b—{ (73Kam K= 3Ky 7 (59)
2 l_Kl !
Oyr Oyr - K1773
Case 1:—(1)=—1, —(7)=0, ®4(1)=0, ®4(7)=0,
C33 Cs3 (49) *1*3K275K273K1
_ (_3K2_5K2_3K1)7/2
by= _ , (60)
Case 212 (1)=0, 2 (5)=0, dy(1)=1, d;(7)=0 b
Cap Gy BT T —Kain®
(50)  where we recall from(34), (27) that
(o o 1
Case 3: " (1)=—1, (" (7)=0, x(1)=1, y(7)=0. =3 58) (61)
I ,
(51) (B°+ay—9-9y)
Equationg41) and(45) can each be used to rewrite the bound- KZ:#, (62)
ary conditions, one pair at the inner surface of the cylinder and (B°+ay=9-9y)
one at the outer surface. For each of the Cases 1, 2, or 3, the 02>
system of linear algebraic equations for the constén®,C,D Q=" . (63)
can be written in the form C33
The unknown constanta,B,C,D can be found using Cramer’s
Ma,=b,(n=1,2,3 (52) Rt and oo d
where the 4«4 coefficient matrixM is defined in terms of col- M 1| IM o M| M 0|
umn vectors A= v BT M CT D= ™[ (64)
M=[m; my; mz my], (53)  where
where Min=[by my mz my], (65)
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Table 1 Material constants for PZT-4

PZT-4
Ca3 115x10° Pa
Ci1 139x 10° Pa
Ci3 74.3x10° Pa
€31 —5.20 C/n?
€33 15.1 C/nt
€33 5.62x10°° F/m

Mon=[my b, mgz m,],
Mgp=[my my b, m,],

Mon=[my m, mg by].

We remark that on formally setting=0 in the precedingso

(66)
(67)
(68)

portance. The moduli for PZT-4 are given in Tablévalues taken
from [2,3]; see[17] for a convenient tabje On recalling the defi-
nitions of the dimensionless parameters3, v, 6 from (16)—(18),
(40), respectively, we obtain Table 2.

The plots in Figs. 2—4 depict results for each of the three cases
of boundary conditiong49)—(51), as well as for three different
aspect ratiosy=1.3,2,4. All quantities are plotted versus dimen-
sionless radiug defined in(23). Since =p< 7, the plot for a
given aspect ratio will terminate at that value of We observe
from (63) that the rotational terrfil depends on the density of the
solid pq, the inner radius, the prescribed angular velocity,
and the elastic constants. The rotational ternf) has been nor-
malized toQ)=1 in Figs. 2 through 6.

Radial stress plots for Case 1 boundary conditions are shown in
the middle subfigure of Fig. 2. The graph for each aspect ratio
begins ato,, /c33= — 1, then attains an internal maximum and has
value zero at the outer boundary. The graphsiserl.3 and»n

that K,=0,K,=0), we recover results for the analogous static 2 are nearly identical. In both cases, the internal maximum has
problems. ’See Ga{Iic and Horgfts] for a detailed discussion of & value close to zero, so that the difference between end values is

the static problem. Because of the algebraic complexity of t@Proximately equal to the difference between the absolute
problem, further analytic expressions for the constdn®,C,D Maxima and minima of the graph. Far=4, however, the differ-

will not be sought. Rather, we will provide numerical results fofc& between absolute maxima and minima is five times greater
each of the Cases 1, 2, and 3, for the piezoceramic PZT-4.

4 Results for the Piezoceramic PZT-4

than the difference between end values. For large aspect ratios, the
effect of rotation dominates whereas for small aspect ratios, the
predominant effect is that of the internal pressure.

The hoop stresses, shown in the bottom subfigure, are all mono-

We present our numerical results in the form of plots of theonically decreasing. Again, the graphs fpr=1.3 andn=2 are
stresses and potential throughout the cylinder. The piezoelectvictually identical. As the aspect ratigincreases toy=4, there is
material PZT-4 has been selected because of its technological engreater absolute difference between end values than for the

Table 2 Dimensionless parameters

PZT-4
@ 1.21
B —-0.34
y 2.83
5 0.65

lower aspect ratios. The effect of rotation on the tubes with higher
aspect ratios is likewise apparent in the potential distributions,
shown in the upper subfigure of Fig. 2. Plots fpr-1.3 and»
=2 exhibit a single internal potential minimum. The graph for
n=4 has a double concavity, exhibiting both an internal mini-
mum and maximum before returning to its prescribed value of
&, =0 at the outer boundary.

Case 2, shown in Fig. 3, is more interesting. From the lower
bottom subfigure, we see that thye= 1.3 hoop stress has changed

0.2 T
0
@ 02}
0.4
-0.6
1 15
6 T
UTT
C33
-2 1
1 15
(LT
€33

Fig. 2 Rotating hollow PZT-4 cylinder:
=1.3, 2,4 (np=>bla).
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1 15 2 2.5 3 35 4
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Fig. 3 Rotating hollow PZT-4 cylinder: Q=1. Case 2: plots for stresses and potential for n
=1.3,2,4(np=>bla).

concavity and is nowincreasing from the inner to the outer shown in the upper subfigure of Fig. 3. Fpre=1.3 andn=2, the
boundary. The remaining two hoop stresses are still decreasipgtentials decrease almost linearly from their prescribed value of
This has interesting consequences, which will be further discusskat the inner radius to zero at the outer radius. Careful examina-
below. The radial stress response, both in shape and magnitud¢iois reveals thep=2 potential to be slightly concave up. This
virtually unchanged from that in Fig. 2. The electric potentials arigend is more apparent in thg=4 graph, where the potential has

1.5 T T T T T
1 -
@
05 g
0 1 — I 1 1
1 1.5 2 25 3 3.5 4
Ory
€33
2 1 1 1 1 1
1 1.5 2 25 3 35 4
20 T T T T T
099
C33

Fig. 4 Rotating hollow PZT-4 cylinder: Q=1. Case 3: plots for stresses and potential for
n=13,2,4 (y=bla).
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Fig. 5 Rotating hollow PZT-4 cylinder: ~ Q=1. Modified Case 2 (®,(0)=2): plots for stresses
and potential for %=1.3, 2, 4 (p=bl/a).

the double concavity already seen in Fig. 2. As the aspect ratle potentialupper subfigureresemble those of Case 2, since the

increases, the stress and electric response is increasingly inflalues occurring in Case 2 dominate those of Case 1. The hoop

enced by the rotation, rather than by the specific boundary condiresses(lower subfigur¢ are monotonically decreasing as in

tions applied, Fig. 2. The radial stress response is again similar to that of Figs. 2
Case 3JFig. 4 is a superposition of Cases 1 and 2. The plots @fnd 3.

2 T T T T T
@,
30 T T T T T
20+ =
O
s 10k i
€33
0
-10 I L 1 I 1
1 15 2 25 3 3.5 4
80 T T T T T
60 =
[of
68 40} _
C33
20 &
e
0 1 I 1 I 1
1 1.5 2 25 3 3.5 4
p

Fig. 6 Rotating hollow PZT-4 cylinder:  Q=5. Case 3: plots for stresses and potential for n
=1.3, 2,4 (np=>bla).
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Recall that in the lower subfigure of Fig. 3, fgre=1.3 the hoop The constant&—D are arbitrary and will be determined from the
stress is increasing whereas fpr=2 the hoop stress is decreasboundary conditions.
ing. This suggests that by slightly modifying the boundary condi- Since we are concerned with a solid cylinder, the displacement
tions, we could obtain &irtually uniform hoop stres$or some and electric field at the origin must be finite. Thus, the constnts
aspect ratio. Such uniformity of the hoop stress was demonstratettiC must be set equal to zero. The solutions for the stresses and
in [15] for the static problem. In fact, on settinh;(0)=2 and potential then reduce to

plotting these modified Case 2 boundary conditions, we can . 2, 5 Sw?
achieve a nearly uniform hoop stress distribution for aspect ratio I _a P Bwit 6fwi—dwi—aw,| |1
n=2. This is shown in the lower subfigure of Fig. 5. The techno- Ca3 wf— a b
logical consequences of a uniform hoop stress are interesting, be- )
cause orthotropic elastic cylinders fail at a critical hoop stress. (3K + 8K, +3Ky), (76)
Here we have shown that a suitably applied electric field can r 2_ o 3_ 2 3
“neutralize” a pre-existing mechanical hoop stress distribution. To0 _ p pwl_l( oBwi &U; aw1+ﬁw1> 1
In Fig. 6, we show Case 3 plots for a higher rotational speed, Ca3 w;Ta b
namelyQ)=5. On comparing with Fig. 4, we see that the double 236K, + aKy+ 3BK), 77)

concavity in the plot for the potential fop=4 has become even

more pronounced. The radial and hoop stresses have siméad
shapes to those in Fig. 4, but their values have increased. Further 1 1
increase of the rotational speed beyofid=5 leads to graphs B=A(p“) = +D = +K.p3 78
similar to those in Fig. 6. =A™ D K% (78)

respectively. We suppose that the lateral boundary is traction-free
and that the electric potential is zero there, hence
5 Rotating Solid Cylinder

g
We now examine the problem of a rotatisglid piezoelectric C—”(l)ZO, (79)
cylinder of radiush. We will see that in this case, explicit closed- 33
form analytic solutions can be obtained. We nondimensionalize ®,(1)=0. (80)
the radial coordinate as . . .
On using(76) in (79) we obtain
r
p=r, (69) —b(3K,+ K, +3K;)
b = 2 2 . (81)
Bwi+ ofw,— dwi—aw;
so that >
w;—a
0<p=1. (70) On inserting(81) into (78) and using(80), we find that
It can be easily shown that the analysis of Section 3 carries over
on formally replacinga by b. Thus, the solutions for the stresses _ b(3Kz+ K+ 3Ky) —bK (82)
and potential are ( Bwi+ SBw,— Swi— aw1> L
Oy 1 ,Bwi-&- oBw,— 5w%—aw1 1 wi—a
—_ w1~ —_
Ca3 Ap wf— o b Thus the solution$76)—(78) for the stresses and electric potential
5 ) can be written
Bws+ 0Bw,r,— dws—aw,) | 1
+B pwz—l 7 " Orr 1 >
wy—a b —=ki(=p“t" "+ p), (83)
Ca3
+Clp?t 1—5—B E+ 2(3K,+ 8K, +3Ky), (71) o —kqk
g o |[p TP IR ORI = (—l SP“1_1+p2), (84)
5 5 5 5 Cs3 Kak
ﬂZA -1 ofwi— dw]— awi+ Bw] E K, . K
Ca33 wi—a b O,=— —pr1+Kip°+| = —K, |, (85)
ky ky
gl et 5ﬁw§_5w§_aw§+ﬂw§) 1 where
P 2_ n
w2« b [ @E+o)yt+3+8 0 86
+p2(36K,+ aK,+3B8K,), (72) Y B ay—9-9y] (86)
and ,Bwi-i- SBw,— 5wi—aw1
1 1 1 1 k= v ) (87)
®1=A(p*) 5 +B(p*2) 5 +C(Inp) - +D - +Kyp, (73) !
k3: wlkz, (88)
respectively. Likewise, the displacement is
(Bor—wd)  (Boy— o) ko= | S0y VT SE IR (89)
w;— W wWo— W 4= 2
U(p)= LT p oy BTN gy B bt Bt ay-9-9y
(01— a) (05— ) @

(74) Thus, for a solid piezoelectric cylinder, the solutidB8)—(85) are
in explicit closed form.
In the precedingK,; andK, are given by(61) and (62), respec- Before discussing our results for the piezoelectric problem, we

tively, with turn to its purely mechanical analog. The stresses for the case of
w2b? an infinitely long rotating solid linearly elastic cylinder can be
O =py . (75) obtained by formally discarding the electric terms28), solving
Cs3 the differential equation fou, and employing boundedness con-
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Fig. 7 Stress plots for rotating solid circumferentially orthotropic elastic cylinder of radius b

(Q2=5). The elastic constants are identical to those of PZT-4.

ditions at the origin. Expressions for are then substituted into =1.21. Thus, one might expect that PZT-4 would behave like a
the stress-displacement relations, i(88) and(39) without the®  circumferentially orthotropic elastic material. However, the stress
terms. On applying the boundary conditi¢fg), one obtains plots for PZT-4 in Fig. 8 are quite different from those in Fig. 7.
As we see in the lower two subfigures of Fig. 8, the stresses for
Irr _ (3+9)0 [pa1-p2] (90) PZT-4 tend tainfinity at the origin. As pointed out above, stress
' singularities at the center of a rotating elastic solid cylinder are
o a chara(_:teristic of_ aadially orthotr_opicelastic material, th_at is, o_f_a
200 _ — [(3+ 8)p@ 1= (36+ a)p?]. (91) material for whicha <1. In Fig. 8 we see these singularities
Ciz 9~ «a occurring in a piezoelectric material for whieh>1. This appar-

Aside from differences in notation, Eq@0) and(91) are simi- €Nt paradox can be explained on returning to jilas) and (84).
lar to Egs.(38) and (39) of Horgan and Baxtef16], obtained for We note that each of these equations contajpé:a- term, where
a rotating elastic orthotropic disk in plane stress. As mentiond¢e recall from(33) that

earlier,a can be written as [BZ+ay (94)
wq= .
! 1+

033_ 9—«a

Ey
“ E’ (92) Thus for w,<1, stress singularities occur as one approaches the
' origin while for w,;>1, the stresses are zero at the origin. On
and we recall fron(75) that using(94), these conditions may be written directly in terms of the
w?b? parametersy, B, y defined in(16)—(18). Thus stress singularities
Q=py c (93) occur at the origin if
33

2
Whena >1, the elastic material isircumferentially orthotro- ve-D)<1-p (95)
pic, while if « <1, the material isadially orthotropic, [16]. For while the stresses are zero at the origin if the sign(98) is
an elastic material whose mechanical properties are identicalreversed.
the mechanical properties of PZT-4, we have seen in Table 2 ofFor PZT-4, it can be verified on using Table 2 that has a
Section 4 thatr=1.21 and5=0.65. The stress¢90) and(91) for  value of 0.96. Thus for PZT-4p,<<1 so that(95) is satisfied and
such a material are plotted in Fig. 7, and these graphs are simitere obtains the stress singularities shown in Fig. 8. Thus, for a
to Figs. 6 and 7 of16)]. Both the radial and hoop stresses tend tootating solid piezoelectric cylinder, it is not the purely elastic
zero at the origin, as is shown [16] for any circumferentially parametera, but ratherw; (a combination of electrical and me-
orthotropic material. This can be seen directly fr¢®@), (91) as chanical parameterswhich determines the full nature of the
p—0. On the other hand, for radially orthotropic materiats ( orthotropy. In this sense, PZT-4 in fact behaves like a radially
<1), it can be seen fror®0), (91) that there are stress singulari-orthotropic elastic material.
ties at the origin[16]. We recall from[16] that the stress response In Fig. 7 for the purely elastic cylinder, both the radial and hoop
in the isotropic case @¢=1) is quite different. stresses have aimterior maximum. The maximum hoop stress
The purely mechanical material for which the stresses are plaiecurs approximately ap=0.25 and has a value af,,/C33
ted in Fig. 7 has a value af identical to that of PZT-4, i.eq« ~0.42. For the piezoelectric cylinder with results shown in Fig. 8,
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Fig. 8 Rotating solid PZT-4 cylinder of radius b (2=5): plots for the stresses and potential
versus p=rlb
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Peoples’ Republic of China By virtue of the separation of variables technique, the spherically symmetric electroelastic

dynamic problem of a spherically isotropic hollow sphere is transformed to an integral
W. Q. Chen equation about a function with respect to time, which can be solved successfully by means

of the interpolation method. Then the solution of displacements, stresses, electric dis-
placements, and electric potential are obtained. The present method is suitable for a
piezoelectric hollow sphere with an arbitrary thickness subjected to spherically symmetric
electric potential and radial mechanical loads, that both can be arbitrary functions about
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1 Introduction In this paper, the separation of variables technique is applied to
olve transient responses of the spherically symmetric problem of
fezoelectric hollow spheres subjected to dynamic loads. First, a

dependent variable is introduced to rewrite the governing

The dynamic problems of hollow spheres and spherical she
have been studied for many years. For elastic materials, base
the momentless thin shell theory, Huth and Cplé studied the
stress waves in a spherical shell produced by dynamic loads. ditions. Second, a special function is introduced to transform
dynamic responses in a thin spherical shell subjected to an &g jnhomogeneous mechanical boundary conditions into the ho-
symmetric pressure loading were considered by Baker ¢2Bl. mogeneous ones. Third, by virtue of the orthogonal expansion
Using the method of characteristics, Chou and Kodiigand technique, along with the initial conditions as well as electrical
Rose et al[4] studied the dynamic responses of cylindrical angoundary conditions, the integral equation about a function with
spherical shells. By means of the finite Hankel transform angdspect to time is derived, which can be solved by means of the
Laplace transform, Cinel[i5] obtained the theoretical solutions ofinterpolation method. The displacements, stresses, electric dis-
dynamic problems of cylindrical and spherical shells. Pao arlacements, and electric potential are finally obtained. The present
Ceranoglu 6] completed the transient responses in a thick-wallegiethod is suitable for a hollow sphere with an arbitrary thickness
spherical shell by the ray theory. While for piezoelectric materialsubjected to arbitrary mechanical and electrical loads. Numerical
Loza and Shul'gd7,8] studied the axisymmetric free and forcedexamples are considered and comparison of responses between a
vibrations of piezoceramic hollow spheres. Shull§a-11] dis- piezoelectric sphere and the purely elastic sphere is made.
cussed the radial and three-dimensional free vibrations of piezo-
ceramic hollow spheres. Heyliger and Wi2] investigated the
spherically symmetric free vibration with the radial electric dis: . .
placement zero on the boundary. Cai eff 48] obtained the natu- 2 Basic Equations
ral frequencies of a piezoceramic hollow sphere submerged in aro study the hollow sphere, it is convenient to use the spherical
compressible fluid. Chen et dlL4] studied the three-dimensional coordinate systemr(#6,¢) with the origin identical to the center
free vibration of a fluid-filled piezoelectric hollow sphere. Bori-of the sphere. For the spherically symmetric problem, we have
syuk and Kirichok [15] analyzed the spherically symmetricu,=u,=0,u,=u.(r,t) and®=o(r,t), whereu; (i=r,6,¢) and
steady-state responses in a piezoceramic hollow sphere submef§eate components of displacement and electric potential, respec-
in a compressible fluid. Li et a16] solved the spherically sym- tively. In this case, the strain-displacement relations are simplified
metric steady-state responses in a laminated spherical shell ca®-
sisting of piezoelectric and elastic layers. Comparing with the
nonpiezoelectric case, it is more difficult to obtain the dynamic U, Uy
analytical solution because of the special coupling effect between Y=g Yoo YeoT @)
mechanical deformation and electrical field in piezoelectric mate-
rials. At present, most works on dynamic behaviors of piezoeleghere y;; are the strain components. The constitutive relations of
tric hollow spheres are concerned with problems of free vibratiagpherically isotropic, radially polarized piezoelectric media also
and steady-state response while the transient responses, althaegh as
they are very important practically, have not been studied to the
author’s knowledge. F1)

049=(C11FC10) Yoo+ C1g¥rr + €31

1To whom correspondence should be addressed.
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wherec;;, €, ande;; are elastic, piezoelectric, and dielectric L. p U gau
constants, respectively, ang; and D, are the components of oy=(C1 +C2)E+C3a—§* e,D,
stress and the radial electric displacement, respectively. The equa-
tion of motion is

(13)

u Ju
UrZZCSE‘FCga—g—e:;D,

oy O~ 0Ogg (92ur 3
ar r Paz ®) where
wherep is the mass density. In absence of free charge density, thecD:cl+e2 P=c,+e?, cC=cytees, cD=1+e
charge equation of electrostatics is ! o2 b B 3214)
19 The solution of Eq(9) is
S+ (r?D)=0. ) 49
1
For the analysis, the following nondimensional quantities are D(¢ )= ?d(’f) (15)
introduced:

whered(7) is an unknown function with respect to the dimension-
_Cqp Ci2 Ci3 €31 €33 less timer. Substituting Eq(13) into Eqg. (8) and utilizing Eq.

=g T GT . &~ v &TT=——, (15 gives
Ca3 Cs3 Cs3 VC33€a3 \VC33€33 (199

Pu 2du wmi  15u e 1
i £33 P D, ot = o U= 5 ——2 -5 25 d(7) (16)
o=—(i=r,0,¢), ¢=\—+, D= . (5 9g2 " E9¢ £ ctor TREeT "
i 033( @) ¢ ) Ca s %) 3 £d¢ § L o &

where

U= u, f*r Sia o= [C33 ,— CUt CD+CD CD

__1 __l __7 U_ _1 __1 l 2_ 3

b b b P b Ml=\/2C—D, cL=ch. 17)
0

wherea andb are the inner and outer radii of the hollow sphere,
respectively. Then by virtue of E¢5), Egs.(1)—(4) can be rewrit- Utilizing the second equation in Eq&l3) and (15), we can re-

ten as follows: write Eq.(10a) as
au u Ju u e
Y=g Vo= Veo~%- (6) g=s: cf——+2c8—=py(n)+ d(7),
29 & 23 3 s
(18)
_(C +C)E+Cﬂ+eﬂ_¢ —1- D(9Ll Du_
0y=(Cq 2 ¢ Sﬁf 1(9&, &=1: Coa—§+2C3Efpb(T)+E3d(T).
u Jdu dg Secondly, a new dependent variaklé, 7) is introduced:
Ur:2C3—+_+E3_y (7)
& o8 Tk u(Em=¢ (). (19)
u Ju Jd
D—2e, " Fep &_tf’. Then Eqs(16), (18), and(11) become
3 & 9 Pw 1 ow ,uz_lzwX g 20
9o, oi—o, U 19_524_55_5_?“’_0_5?4_ (&)d(7), (20)
—+2 =—>. (8)
9& & a7
E=s e ihe=py(n)
19 T e T ETPUTh
=2 (£2D)=0, © £t (21)
& 08
oW w
The boundary conditions are &=1: E +h I P2(7),
o (S, 7)=pa(7), o (L,7)=py(7), 10a) .
(ST =Pa(n), (L) =P (e W(EO=Uy (), W(E0)=v1(8), 22)
B(s,7)=ba(7),  B(L7)=bi(7), (10) | here
where p,(7) and py(7) are the known dimensionless pressures o
acting on the internal and external surfaces of the sphere, respec- :20_37 3 _ 2, 3 X(£)= 722
tively, and¢,(7) and ¢,(7) are the known dimensionless electric cg 2’ K Mty co o7
potentials imposed on the internal and external surfaces, respec- s
tively. s e 1 q
The initial conditions are expressed as pi(7)= @ Pa(7)+ Zd(7) |, Pam)= %[pb(T)"—eS (0],
7=0: U(£0)=U(é), UED=ve(6),  (11) (23)
where a dot over a quantity denotes its partial derivative with u(&)=E%u(8),  v1(&)=E"0(8).
respect to time. Third, in order to transform the inhomogeneous mechanical
3 Analysis boundary conditions into the homogeneous ones, we assume
First, we rewrite the third equation in E€f) as W(E,7)=wi(§,7)+Wy(&,7), (24)
o u U Wher_e_vvz(g,r) satisfies the inhomogeneous mechanical boundary
f7_§ =2elE +e3(?—§— D. (12) conditions and can be taken as
- _gym _qym
Then substituting the above equation into the first two equations Wa(&,7)=Ao(£—9)"P2(7) +Bo(§—1)"ps(7), (25)
in Eq. (7), gives in which
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1
m(1—s)™" 1+h(1—s)™

AO:

1
Bo= mis— 1™ T+ h(s=1)"s’ (26)
andm is an integer no less than 2, which should satisfy

[M(1—s)™ 1+ h(1—s)™[m(s—1)™ 1+ h(s—1)"s]+0.
(27)

Substitutingp,(7) andp,(7) in Eq. (23) into Eq. (25) gives
Wo(€,7)=f1()pa(7) +F2(§)pp(7) +f3(£)d(7),  (28)
where

A
fi(§)=s"p °<f nm fz(§)=c—§(§—5)m,
1
fa(6)=es| 2 Fa(&) +F2(6)|. (29)

Substituting Eq(24) into Egs.(20)—(22) yields

Pwy(é1)  Lowy(€7) pP
D T v
1 o°wy(é7)
—g e, (30)
e wEn
9% +h £ =0, (é=s and ), (31)

W1(£,0)=Uy(£) —3(£)d(0), Wi(§,0)=va(§)— fs(f)d(o()éz)

where
9(&,1)=01(£,7)+92(£)d(7) +ga(£)d(7),
U(€)=Uy(€) — F1(£)pa(0) — F2(£)Pp(0),
v2(£)=v1(£) ~ 1(£)pa(0) — f(£)Py(0)

(339)

(330)

and
91(&,7)=14(&)pa(7) +T5(E)Pu(7) +[F1(£)Pa(7)
+12(E)pp(n)]1/cE,

1df5(9)

(-7 g

g3(é)= 30(5)'
- (34)
_1dfy(® d2f1<§>
1dfy(&) d?f5(9)
& d¢ dé?

d*f5(§)

d§2 +X(§),

92(8€)= lgz f

f5(&)= ng

in which J (k) andY ,(k;¢) are Bessel functions of the first and
second kinds of ordew. The eigenvalueg;, arranged in an as-
cending order, are a series of positive roots of the following equa-
tion:

J(Mxki ,S)Y(/.L,ki,1)_J(/.L,ki,l)Y(,bL,ki 15):01 (37)
where
B dJ,L(ki§) 3,k f)
_dyu(kig) Yk §)
Y ki, &)= dE +h ¢ (38)

It can be shown thatv,(&,7) given in Eq.(35) satisfies the ho-
mogeneous mechanical boundary conditions in B4). Substi-
tuting Eq.(35) into Eq. (30) gives

7 +c2g(&,7).

(39)

By virtue of the orthogonal properties of Bessel functions, it is
easy to verify thaR;(£&) has the following properties:

—cLE K2F (1)Ri(£)= E R(&)° >

1
f ERI(ER;(HAE=N; 5 , (40)

where g;; is the Kronecker delta, and

1 [[dR(D)]? [dR(S)]? , , )

'2_k|2” dz - 2[ daz + kA R3(1)—s?R¥(s)]
uz[RiZ(l)R?(s)]], (41)

in  which dR(s)/d¢é=dR(£)/dé,.s and dR(1)/d¢

—dR,(§)/d§|§ 1. Utilizing Eqg. (40), we can derive the following
equation from Eq(39):
2 i(7)
dr?

+oRF (1) =a(7), “2)

where

0i(7) =0y (7) +hyd(r) +hyd(7),

c? (1
oken Gm=— i | DR @

c? (1 c? (1L
hli:_WJ £9,(8Ri(§)d¢, hZiZ_WJ’ £93(6Ri(§)dé.
The solution of Eq(42) is

Hy; 1 ("
Fi(7)=Hj; cosw;7+ lsinwiﬁ—f gi(p)sinw;(7—p)dp.
i Wi Jo

Using the separation of variables technology, the solution of

Eq. (30) can be assumed as

w1<f,r>=2 R(&Fi(7), (35)

whereF;(7) is an undetermined function ariRi(¢) is given as
follows:

Ri(£)=J,(ki&)Y(p.ki,s) =Y, (ki§)I(u, ki ,9), (36)
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(44a)
We can derive the following equation from E@4a)
l-:i(T): _wiHli Sinwi7'+ H2i COSwiT
+f gi(p)coswi(7—p)dp, (44b)
0

whereHy; andH,; are unknown constants. Using E®5), Eq.
(32), and utilizing Eq.(40), gives

Hyi=11i+15d(0), H2i:|3i+|2id(0)l (45)

where
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1 (1 —1 [t
Ili:WiJ Euy(§Ri(§)d¢, IZiZWiJ’ Ef3(HR(&)dE,

1 (1
Isﬁgj Ev2(HRI(E)dE. (46)

Noticing that q;(7) in Eq. (44) includes a(r), we use the
integration-by-parts formula and obtain

JTd(p)sinwi(T* p)dp
0
— —d(0)sinw; 7—d(0) w; COSw; 7+ w;d(7)

2 f d(p)sine(r—p)dp. (47)
0

Substituting the first equation in E¢43) into Eq. (44a) and uti-
lizing Eq. (47), gives

Fi<r>=F1i<r>+h2id<r>+(%—hziwi)Jon<p>sinwi<r—p>dp,
(48)
where

Ho; 1 (-
F1i(7)=H4 cosw; 7+ 2 sinwir+—J dii(p)sinwi(7—p)dp
Wi Wi Jo

hyi -
- f[ol(O)sinwiTJr d(0)w, cosw; ]. (49)

In the following, we will determinel(7) from the electric bound-
ary conditions. Substituting Eq15) into Eq.(12), gives

do ) u N ou 1 d(r)
—=2e,—+e;——— .
g e g g2ny

Then substituting Eq(24) into Eq. (19), and utilizing Egs.(28)
and (35), we obtain

u(g,n=¢"1 E RI(EF (1) +F1(£)palT)+ F2(€)Py(7)

(50)

+f3(§)d(7)}- (51)
Integrating Eq.50) and utilizing Eq.(51), derives
H(&,7)= h1(&)Pa(7) + h2(E)Pu(7) + P3(£)d(7)

+Z ba(EFi(1)+ ba(7), (52)

where

¢
¢1(8)= ZEJ £ (E)dE+eg €71, (6)— s VHy(9)],

3
ho(€)= 2elf f_slzfz(f)df"‘ es[f_llzfz(f)_S_llzfz(s)]:
° (53)

¢ 1
¢3(§):291f fi3/2f3(§)d§+e3[§7llzf3(§)*Sfllzfs(s)]JrE

1
5
3
¢4i(§):291j EIR(HdEF e[ £ VR I(E)) —sTVRI(9)].
If £=1, Eq.(52) reads as
Du(7)= 1 (D)pa(7)+ do(1)pp(7) + h3(1)d(7)

+ ) ba(HFi(7)+ da(7). (54)
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Then
Bo(7)= 1(1)Pa(7) + Ba(1)pp(7)+ b(1)d(7)

+ ) ba(HFi(7)+ da(7). (55)

If =0, we can determind(0) andd(O) from Eqs.(54) and(55)
by virtue of Egs.(44) and(45):

B(0)— ha(0) —$1(1)pa(0) = (1) Pp(0) — = b (1)1 5
G3(1)+Zihgi (D)1 (56)

B(0) — Ba(0) —h1(1)Pa(0) — do(1)Pp(0) — = bui( 1)1 5
G3(1)+ 254 (1)1 '

Substitutingd(0) andd(O) into Egs.(45) and(49), thenH,; and
H,; become known ané q;(7) is a known function. Substituting
Eq. (48) into Eq. (54) derives

d(0)=

d(0)=

W)=Ed(n)+ >, Ey fod<p>sinwi(r—p>dp, (57)
where
W(7) = (7) = ba(7) — B1(1)Pa(7) — b2(1)Pp(7)

= u(L)Fy(7),
' (58)

hy;
Er= 31+ 2 du(Dhz,  Ez=dal) ;fhmwi)
I
It is noted that Eq.57) is a \olterra integral equation of the
second kind, which is sure to have a unique solut{d]. For
some cases, the analytical solutions can be obtained. While for the
general case, numerical methods are needed. In this paper, we will
construct the recursive formula by making use of a linear interpo-
lation function approximation odl(7). Practically, the numerical
result can be obtained efficiently by the present method. In order
to show the method, we first divide the time inter{/@Jr,] into n

subintervals, with discrete time pointg=0, 71, 7, ...7,.
Then the interpolation function at the interyal,_,,7;] is
d(n)=¢(nd(rj—)+p(nd(7) (j=12,...n), (59)
where
T— ’Tj T— Tj*l .
((n=——"— n(n=——-—, (i=12,...n).
ijl 7'] 'TJ ijl
(60)
Substituting Eq(59) into Eq. (57), gives
i
$(Tj):Eld(Tj)+2 E2ik21 [Lijkd(7—1) +Mjjd(m)]
T =
(61)
where
Tk .
Lijk:f {i(p)sinw;(7j—p)dp,
Tk—1
Tk
Mijk:f n(p)sinwi(r;—p)dp,
k-1
(k=12...j, j=12...n). (62)

Then we can derive the following formula from E@.1):

MAY 2003, Vol. 70 / 439



dir) P(1) = SiEuZL A Lijed(7i— 1) + Mijd(7) 1= d( 7, 1) SiEiL
7)) = ’
! E1+2iExMjj;

(j=12...n). (63)

In Eqg. (56), we have obtainedl(0), then from which we can  Example 2. The transient response of a PZT-4 piezoelectric
obtaind(7), (j=1,2,...n) step by step by virtue of Eq63). hollow sphere subjected to a constant pressure suddenly applied
After d(7) is obtainedu(&,7) and ¢(&,7) also can be determined. on the internal surface is considered. The material constants are
Cllz C22: 1390 GPa, C12: 778 GPa, 013: 743 GPa, C33
4 Numerical Results and Discussions *11%4 ?Pa’ Lo~ —5.2CInf,  eg= 15._1C/n?, £33=5.62
X 1077 C°/(Nm*). For the sake of comparison, we also consider

We first study the validity of the proposed numerical methogin elastic hollow sphere with the elastic constants identical to
for ~solving the integral equation ¢(7)=E.d(7) those of the PZT-4 sphere. The boundary conditions are
+3M By f{d(p)sinw(7—p)dp. Note that ifd(7) is a polynomial

or an exponential function of time, the functiony(7) can be pa(T)=—0H(7), pp(7)=0.0,
obtained explicitly by substituting(7) into the integral equation (64)
and performing the integration analytically. ¢.(7)=0.0, ¢p(7)=0.0,

~ Example 1. In this example, we cor315|der two forms &€7),  \here o, is a prescribed constant stress, ahgr) is the Heavi-
l.e., 2d(r)=100.0+59.07+ 2-07'2_+0-1T and d(7)=100.0 gjge function. In the following, we takep=1.0, s=0.5, m=2,

x e~ %%+50.0, for which analytical express @f(7) can be ob- andn=200, and the first 40 terms of the series in E&F) for
tained. For Calculation, we takm=30, wi={1.4278, 74792, numerical calculations.

14.6938, 21.9699, 29.2605, 36.5568, 43.8559, 51.1566, 58.4583;igure 1 shows the responses(t}fa{ §:0_75(the middle sur-
65.7607, 73.0635, 80.3667, 87.6701, 94.9737, 102.27#3ce in the PZT-4 and elastic hollow spheres. From the curves,
109.5814, 116.8854, 124.1895, 131.4936, 138.7978,146.108k can see that the curve of the PZT-4 sphere is different from
153.4064, 160.7107, 168.015, 175.3194, 182.6238, 189.928%t of the elastic one.

197.2327, 204.5372, 211.8417 E;=-0.691662, Ej Figure 2 gives the responses ®@f at £&=0.5 (the internal sur-
={0.1040,0.60669, 0.0093643, 0.19733, 0.0044263, 0.11795%cq in the PZT-4 and elastic hollow spheres. For the PZT-4
0.00291596, 0.0841636, 0.0021776, 0.0654299, 0.001738phere, we find that the maximum value of the dynamic hoop

0.05352, 0.0014472, 0.04528, 0.0012396, 0.03924, 0.001084gess appears at the internal surface, which is tensile. The first
0.03462, 0.00096343, 0.030976, 0.0008669, 0.02802%eak value appears at the time1.45 and it is 2.25 times of the

0.00078796, 0.025587, 0.0007222, 0.02354, 0.00066&4pplied stress. For the elastic hollow sphere, we have almost the
0.021796, 0.00061894, 0.020286and y{7) is obtained theoreti- same observations, except that the first peak value is just 1.99

cally by substituting the prescribed{7) into the integral equa- times of the applied stress, which is less than that in the PZT-4
tion. The results presented in Tables 1 and 2 are for the polyngshere.

mial d(7), while those in Tables 3 and 4 for the exponentigt).  Figures 3 and 4 illustrate the responses of dimensionless radial
The method using the trapezium rule to solve the integral equatigrectric displacemer at different locationgé=0.5, £=0.75 and
can be found in Ref18]. £=1.0) and the distributions of dimensionless electric potential

From Tables 1-4, we can find that the present method hagthe different timegr=0.1, 7=0.2 and7=0.5), respectively, in
very high accuracy for numerical computation. In the followingihe PZT-4 hollow sphere subjected to a sudden constant pressure
we will study the transient response of a piezoelectric hollogh the internal surface. From Fig. 4, we find that the calculated

sphere using the present method. electric potentials both at the internal and external surfaces are
Table 1 Numerical results for step length  A7=0.1 Table 3 Numerical results for step length  A7=0.1
The Trapezium Rule The Present Method The Trapezium Rule The Present Method
Theoretical Numerical  Relative  Numerical Relative Theoretical Numerical Relative Numerical Relative
Time Results Results Error Results Error Time Results Results Error Results Error
0.0 100.0 100.0000 0.000 100.000 0.000 0.0 150.000 150.000 0.000 150.000 0.000
2.0 208.8 193.6295 —7.266E-2 208.8018 8.842E-6 2.0 117.032 101.913 —1.289E-1  117.033 1.050E-5
4.0 338.4 322.9652 —4.561E-2 338.4019 5.681E-6 4.0 94.933 91.641 —3.468E-2 94.933 5.867E-6
6.0 493.6 470.8311 —4.613E-2 493.6021 4.328E-6 6.0 80.119 73.017 —8.865E-2 80.120 6.475E-6
8.0 679.2 650.1156 —4.282E-2 679.2021 3.145E-6 8.0 70.190 71.912 2.454E-2 70.189 —2.609E-6
10.0 900.0 862.1855 —4.202E-2 900.0021 2.306E-6 10.0 63.534 63.653 1.882E-3 63.533 —5.344E-6
Table 2 Numerical results for step length A7=0.5 Table 4 Numerical results for step length  A7=0.5
The Trapezium Rule The Present Method The Trapezium Rule The Present Method
Theoretical Numerical Relative Numerical Relative Theoretical Numerical Relative Numerical Relative
Time Results Results Error Results Error Time Results Results Error Results Error
0.0 100.0 100.000 0.000 100.000 0.000 0.0 150.000 150.000 0.000 150.000 0.000
10.0 900.0 686.866 —0.237 900.072  7.948E-5 10.0 63.534 53.110 -0.164 63.536 3.254E-5
20.0 2700.0 2059.821 —-0.237 2700.131  4.856E-5 20.0 51.832 42.306 —0.184 51.845 2.505E-4
30.0 6100.0 4612.715 —-0.244 6100.163 2.674E-5 30.0 50.248 31.182 -0.379 50.245 —5.253E-5
40.0 11700.0 8857.273 —0.243  11700.231 1.978E-5 40.0 50.036 39.326 -0.214 50.051 3.500E-4
50.0 20100.0 15218.591 —-0.243 20100.282  1.380E-5 50.0 50.005 37.043 —0.259 50.020 3.028E-4
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Fig. 2 History of dynamic stress o4 at §&=0.5

zero, which satisfy the prescribed electric boundary conditionsaposed on the external surface is considered here. The material
The correctness of the numerical results is thus clarified in thienstants are the same as those in Example 2. The boundary con-
respect. ditions become

Example 3. The transient response of a PZT-4 piezoelectric
hollow sphere subjected to a constant electric potential suddenly Pa(7)=0.0, py(7)=0.0, (65)
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Fig. 3 Histories of dynamic electric displacement D at different locations

ba(7)=0.0, ¢p(7)=poH(7), Figures 5 and 6 show the dynamic responses0énd o in

. . . . he PZT-4 holl here. From the resul find that the maxi-
where ¢y, is the prescribed constant electric potential. For numertl-e ollow sphere. From the results, we find that the maxi

cal calculations, the same parameters as that in Example 2 am value ofo, appears neaf=0.75(the middle surface while

employed, except thapy=1.0 is used instead af,=1.0. that of o, appears at=0.5 (the internal surfage The first peak
0.01
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5.00
—_— =05

4.00 —

——— )75

—_———— Eal0

3.00 —

Hoop stress oy
8
{

Nondimensional time 7

Fig. 6 Histories of dynamic stress o, at different locations

value of o, is 4.11 that appears at=1.45. Figures 7 and 8 give In terms of the numerical results for different terms of the series
the dynamic responses &f and ¢ at different locationgé=0.5, in Eq.(35), we find that the results vary very slightly between that
£=0.75, andé=1.0) in the PZT-4 sphere. It is seen that the maxiof 30 terms and 40 terms. So we take the first 40 terms of the
mum absolute value dD appears at the internal surface, and theeries in Eq(35) for computation involved in Examples 2 and 3.
calculated electric potential also satisfies the prescribed electridf the electric boundary conditions in E¢LOb) are expressed
boundary conditions. by the electric displacement, only one boundary condition will be
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involved. That is because, if the electric displacement is prbe written as Eq(52). But if we want to determineb(&,7) com-
scribed on one surface, then the distribution of the electric dipletely, one boundary condition relatedd¢amust be known. That
placement can be determined immediately from @&). In this s, either¢,(7) or ¢,(7) should be prescribed. The relationship
case, from the beginning to E¢9), the displacement solution betweeng,(7) and ¢(7) is given in Eq.(54).

can be determined and the procedure of solving the integral equal ¢, (7) and »,(7) are polynomials ofr, the integration in Eq.
tion can be avoided. The expression for electric potential can al&®) can be obtained explicitly, which can improve the computing
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Elastic Singu|arity |nteracting With obtained the solution of a singularity in an anisotropic trimaterial
. by employing the method of analytic continuatiof8], and
Various Types of Interfaces Schwarz-Neumann’s alternating technigié, In their study, two

interfaces are considered as perfectly bonded interfaces. It will be
shown in this study that the solution of a singularity in an aniso-

S. T. Choi tropic trimaterial with (i) perfectly bonded(ii) separated(iii)
rigid, (iv) separated without slip, an() slipping interfaces can be

Y. Y. Earmmel easily obtained from their solution. To make this presentation con-

e-mail: yyearmme@kaist.ac.kr cise, the notations 2] are employed here and the reader is

referred to[ 2] if the more detailed explanation or explicit form is
needed for the quantity omitted here for convenience of reduction
in length.

Department of Mechanical Engineering, ME3013 KAIST,

Science Town, Daejeon 305-701, Republic of Korea

Mem. ASME

2 Solution Procedure and Result

. . . _ . L ., The elastic field of an anisotropic body can be represented in
The elastic solution for a singularity in an anisotropic tnmatenaltermS of three functions;(z) (j=1,2,3), each of which is ana-
J ] 149 il

with perfectly bonded interfaces was obtained in the previom'?[- . _ k : ;
. . o ic in its argumentz; = X, +u;X, for a two-dimensional problem,
work by Choi and Earmme. The term *“trimaterial” denotes an e., with geometry and external loading invariant in the

infinite body composed of three dissimilar materials bonded alo@g-direction. Hereu, is the eigenvalue with positive imaginary

two parallel interfaces. It is shown in this paper that when th art of the sextic equation, EG6) of [2]. The convention of
interfaces of an anisotropic trimaterial are one of the foIIowingEummation over a repeated’ subscript is used, but the index with
types: (i) perfectly bonded, (ii) rigid, (iii) separated, (iv) Sepaynderlined bar does not imply summation ’that s f.(2)
rated without slip, and (v) slipping interfaces, the elastic SO'“tiOQA-lfl(zl)+A-2f2(22)+A-3f3(23) but f_(z,)q'é f1(21)+!f2](z§])
for a singularity in the trimaterial has the same form as that for a_ fsl(Zs)- it thelanisotropicl material has the monoclinic symmetry
singularity in a trimaterial with perfectly bonded interfaces, bublane with respect ta;=0, the in-plane and antiplane deforma-
with Fhe bimaterial matrices properly altered. tions are decoupled5], which will be separately considered in
[DOI: 10.1115/1.1571858 this paper. The coupled case may be easily treated by the exten-
sion of the same procedure as described in this paper, however, we
omit it in this brief note.

1 Introduction In-Plane Deformation. Let us consider an anisotropic bima-
The interface between two monocrystalline materials exists farial (Fig. 1(a)) undergoing inplane deformation. Across the in-
frequently used structures of microelectronics and optoelectroniteiface, the normal and shear stresses are continuous, that is,

To accommodate the lattice mismatch across the interface, variots(x,) = ogi(xl) (i=1,2), where the superscriptsandb stand
types of interfaces and interface structures evolve in such a wlay materialsa and b, respectively. In this study, five types of
that the total free energy of the system is at its lowest vdllle, interfaces are considered, which are classified according to the
For example, the defects like dislocations are often formed at theundary conditions as follows:

interface to relax the mismatch strain, and the periodic array of Ca b a b

those dislocations makes the interface incoherent. However, the?€ 1(perfectly bondegl :uj(xy)=uj(X1), Ua(X1)=u3(Xy),
elastic field near defects cannot be easily obtained because ofg)se

difficulty in satisfying the boundary conditions at the free surface
and/or various types of interfaces. Recently, Choi and Earfizhe Type 3(rigid) ZU?(X1)=U2(X1)=0,

Aseparatel : oy (X1) = 05,(X1) =0,

To whom correspondence should be addressed. Type 4(separated without slip:uf(x;)= U?(Xl),ogz(xl) =0,
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME-  Type 5(slipping) : a-gl(xl) =0U3(xq) = ug(xl).

CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 21,

2002; final revision, November 12, 2002. Associate Editor: J. R. Barber. It is noted here that Type 2 interface means the free surface.
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Fig. 1 Singularity in an anisotropic bimaterial (a) and trimaterial (b)
By applying the method of analytic continuation, S8 ex- ( *
pressed the solution for a singularity in an anisotropic bimaterial Uﬁbz f;‘(zia_#?mﬂfh), in S,
(Fig. 1(a)) with perfectly bonded interfac@.e., Type 1 interface n=1 . . -
as follows,[2]: w
U, in S, fia=1 2 (N@+VIT@-phtafh], in S,
fi(z)=y —,— ) 1
() Ve Oz +£9(z°), in S, @) >
L A A cheO/C chyjab ng.Cc b —b :
o _ _ o UEPF(z) +USVR Y, Tz —uih+mph), in S,
in which f;(2) is the solution for the same singularity in a homo- \ n=1 -
geneous medium, arld andV are expressed in terms of material 9)

matricesL andB as,[2],
in which the recurrence formula fdf'(z) is

U2b= (L)~ L(1+T#0)LP, )
_ 0 \/cbs0 o
vab:(l_b)fl-l-abl_bl (3) fin'"]-(z): B fi (Z)+Vij fj(Z), if n=0,
_ VEVAF A (z— mPh+ uph), if n=1,23,...
T3=(B2+BP)~1(B"-B? (Type 1 interface (4) - . (10)

By employing the similar procedure used by S8} for an  gqation(9) with Eq. (10) is considered as the general solution
anisotropic bimaterial having one of the other types of interfacg,. 5 singularity in an anisotropic trimaterial, each interface of
the s_,olutlon for a smgu_larlty in the anisotropic bimaterial can B&hich is one of Type 1-5 interfaces. Depending on the type of the
obtained, but the details are suppressed here. Interestingly, {he ace at,=h (andx,=0), all we have to do is to replace the
solution has the same form as Hd), while only the bimaterial matrix T2 (and T°°) in Egs. (9) and (10) by the corresponding

o, Tab ; :
matrix T2° is altered as follows: matrix given in Eqs(4)—(8).
T%®=—1, (Type 2 interfacg (5) Antiplane Deformation. For the antiplane deformation, three
_ types of interfaces are considered as follows:
T23P=(BP) "1BP, (Type 3 interface (6)
gb _pga Type 1(perfectly bondegl :ug(xl):ug(xl),
T2b=dia —H,—l), (Type 4 interface 7
Bt By Type Zseparate :ahy(x;)=0,

b 4 Bgz_ Bgz . . b

T?®=diagd —1=5——%|, (Type 5 interface (8) Type J(rigid) :uz(x;)=0.
BZZ+ B22

where diag( ) denotes a diagonal matrix drig the identity ma- Using the same procedure as in in-plane deformation, the general
trix. We note here that the results obtained from Egs.and(6) ~ Solution for an antiplane singularity regardless of the type of in-
coincide with those of SufB]. Also it is remarked here that the terface is expressed in terms of the solutigfiz) for the same
matrix T?" represents the mismatch of elastic constants of twaingularity in a homogeneous medium as
constituent materials and also includes the information about the

interface. (1+T3%)f3(23), in S,,
Choi and Earmmé2] employed the alternating technique to- fa(z3)= ) (11)
gether with the method of analytic continuation to analyze a sin- 329 +T33(z), in Sy,
gularity in a trimaterial with two parallel interfacé3ype 1 as
shown in Fig. 1b), resulting in for an anisotropic bimaterigFig. 1(a)), [3], and
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(L+T*)F (25— u3h+psh), in'S,,
fa(ze)= F(2) + TaPF (22— 2ahi), in S,
(1+TO)[£9(25) + TAF (5~ 2ahi)], in S,

(12)

for an anisotropic trimaterigFig. 1(b)), [2]. Here,a= Im(,ug) and

F(z)=nZO (TeOTab) [ £9(z+ 2ahni) + T2F(z+ 2ahni)].
(13)

Depending on the type of interfaceat=h (or x,=0), the con
stantT2” (or T°?) becomes

Bb a
ab_ 33 33 .
T BB+ BL,’ (Type 1 interfacg (14)
Tab=—1, (Type 2 interface (15)
TaP=1 (Type 3 interface (16)

For line force or screw dislocation at,x3), the homogeneous
solutionf3(z) is given as
P3.

2

bs

q
fg(z3)= Z?"r In(z3—s3), Q3=-— Eas

wheres;=x3+ usx3. When both interfaces at=h andx,=0 in

a trimaterial are rigid interfacedype 3 or separated interfaces
(Type 2, that is, T3=T®=T=1 or —1, respectively, using the
homogeneous solutiofl7), the solution given in Eqs(12) and
(13) reduces to a closed form as

f3(zg)=;—; > In(Z—s3+2ahni)

n=—o
%

— > In(Z—s)+2ahni)

n=-—w

i

ﬁ(zg—sg)
N .

Si m(z?,— in S. (18)

By comparing the series solutiofthe first equality with the
closed-form solutionthe second equalifyin Eq. (18), it is in-

ds —
+ J—
T o= In S3)

ferred that the rate of convergence of the series solution depeﬁéf

on the boundary condition at both interfaces through the const
T as well as on the type of singularity through. That is, the
solution for line force withT=1 (Type 3 is more rapidly conver-
gent than that for line force witli=—1 (Type 2. This tendency
is reversed for a screw dislocation. It is also inferred from th

on the boundary condition at both interfaces, the type of singul
ity, and the direction of singularitye.g., the direction of Burgers
vecton, as already mentioned by Choi and Earmi@g

3 Concluding Remarks

It is shown in this paper that when the interfaces of an aniso-

tropic trimaterial are one of the following typesi) perfectly
bonded,(ii) separated(iii) rigid, (iv) separated without slip, and

the trimaterial solution depends on the bimaterial matrix including
the information about the interface and the type of the singularity.
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Michell's General Solutions for
Torsionless Axisymmetric Problems
With Body Forces in Elasticity

Y. C. Lou
M. Z. Wang

Department of Mechanics and Engineering Science,
Peking University, Beijing 100871, People’s Republic of
China

In this note, it is pointed out that simple modified Michell's gen-
eral solutions may treat the torsionless axisymmetric problems
with both axial and radial body forces in elasticity and are more
convenient in some cases contrast to Love’s solutions.

[DOI: 10.1115/1.1571857

There are two kinds of general solution for the torsionless axi-
metric problem. One is Love’s solution, the other is Michell’s
ution. Both are completél]. Using Love’s solution, Fun{2]
obtained the solutions of the problems with body forégsSim-
monds[3] solved the problems with both body forcésand f,
with a modified form of Love’s solution. It will be pointed out in

i@e following discussion that we can also use the modified Mich-

observation that the rate of convergence of the trimaterial soluti§
given in Egs.(9) and(10) for in-plane deformation may depend

H’s general solution to solve the problems with both body forces
and for some cases it is more convenient to use Michell’s solution.
Referring to circular cylindrical coordinatgs, 6,z}, a torsion-

r- . L h
E?ess axisymmetric displacement field has the form

U=Ur(r,2)& T Uyr,2)e,. 1)

Of course, we suppose that the underlying body is a body of
revolution, and its half-meridional surface is denoted®yn this
case, the displacement equation of equilibrium for homogeneous,
isotropic, linear elasticity with body forces is read as

Veu+

1
15, V(Y= ®)

(v) slipping interfaces, the elastic solution for a singularity in the

trimaterial has the same form as that for a singularity in a ’[ré/—L

material with perfectly bonded interfaces, but with the bimateri
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ANICS. Manuscript received by the ASME Applied Mechanics Division, January
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where v is Poisson’s ratiou is the shear moduf; is the body 1
force vector, which is given by u=v3eM)— mV(VerMHerd) 4
f=f.(r,2) e +1,r,2)e,. (3) whereM is Michell's potential andpP exists only when body force
f, is not zero.
The modified Michell’s solution is written as Substituting(4) into (2) yields the equations

(Vz_i)(vz_i M+ V2P + ! i(@-l‘g):—f(rz) (5a)
r? r? 1-2varlor 1 nh

1 9(od @

EE(aT*T):‘UM- (5b)

Contrast to Love’s solution, it is more convenient to use Michell’s The use of half-power bandwidttighe difference between the
solution when only body forcé, exists. two frequencies at 0.707 maximum amplituder the extraction
From (5b), we can get of estimates of the loss factor from resonant response curves is
—_— discussed in most elementary texts on vibration and has become a
staple in the procedures for modal testid]. It is generally
P=-(1-2v)r Jr JZ 7 ftis)dsdt. (6)  understood that the use of this procedure invokes the assumptions
0= 0 that the system acts as a single degree-of-freedom system and that
The definite integral ir(6) is over the half-meridional surface all system elements are linear; in particular, that the damping is
G. Thus the regiorG must be bottz-convex andr-convex. The linear, i.e., that the loss factor is independent of amplitude.
case will happen foK2) of Simmonds[3], too. WhenG is not While it might appear that, when loss factors increase with
convex, we have to use two components of Galerkin’s vector agwplitude, estimates can be improved by taking bandwitihs
Fung'’s suggestior2]. propriately compensatgechigher on the response curve, i.e., at
r-amplitude points, where is a convenient number in the range
0.70r < 1. Bandwidths at the half-power and 80% power fre-
References quer)cies are shown on a resonant response curve give_n as in Fig.
1. Itis understood that the degree of experimental error introduced
(1] ‘(‘(’)ﬁ/’;gérﬁ"d ﬁicﬁgeﬁ%h “/?;isth; ﬁgmg'fz‘g;iii of 350:522?12 of Boggﬂggsqx Timpgy so doing will increase as the two frequencies to be differenced
[2] Fung, Y. Z., 1965Founda)t/ions of Solid Mecyﬁan}pﬁrenticé’?géll, Engléwood approac;h e,a,Ch Other', Nonetheless, with data of sufficient quality, it
Cliffs NJ. seems intuitively obvious that the use of larger values stfiould
[3] Simmonds, J. G., 2000, “Love's Stress Function for Torsionless Axisymmetricnprove the estimate of damping. It will be shown here that this is
Deformation of Elastically Isotropic Bodies With Body Forces,” ASME J.fg|se.

Appl. Mech.,67, pp. 628-629. Consider a single degree-of-freedom system having the re-

sponse.
A Note on the Estimation of Nonlinear A ot W
System Damping Xt V(1=19%+(50A")"
where A is the magnitude of the complex amplitude of the re-

. sponseX(t)=A exp(t), to an inputF(t)=F,exp(Qt). In the
P. J. Torvik above, f=0/wy, wy is the undamped natural frequency, and
Fellow ASME Xs1=F,/K, K being an effective stiffness. Equati¢h is written
Professor Emeritus of Aerospace Engineering and for nonlinear structural damping with amplitude dependence mod-

Engineering Mechanics, Air Force Institute of Technolog)‘?,IeOI by

1866 Winchester Road, Xenia, OH 45385.
n(A) = 7oA™ 2

with m=0. For the linear systenm=0. The response curve in

System damping for a single mode in resonance is often estimafa@ 1 1S for structural damping witm=1 and 7,=0.001. For
from a measurement of the bandwidth of the frequency resporf&FOUs dampingz, may be replaced by &f, where{ is the
function. While the bandwidth is customarily measured betwedction of critical damping.

the half-power frequencies, it is also possible to choose any otherAfter rearranging Eq(1) into the form

fraction of the maximum amplitude. If the damping is linear, i.e., if
the loss factor is independent of amplitude, the same damping will f2=1+ (Xg7/A)?— (9oA™)? )
be found with any such choice. While intuition might suggest that
the damping of a nonlinear system would be better estimated frém’
a bandwidth taken closer to the maximum amplitude, this is sho
to be false.[DOI: 10.1115/1.1571859

elationship between the bandwidth and the damping at the
ximum amplitude =1, or resonande may be obtained.
learly, the maximum amplitud&g occurs when the radical van-

ishes, or
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MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Ar 1 1
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March X_ = —m= T 4)
26, 2002; final revision, December 18, 2002. Associate Editor: N. C. Perkins. ST 770AR 7/( R)
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10 +— e e For the linear casenf=0), Eq.(6) becomes

8 n=(f3—13)/(2{1h2-1), (7

which is the appropriate relationship for estimating loss factors
when using other than the half-power points, and is equivalent to
other forms, as have been discussed elsewH@ie,However,
4 when Eq.(7) is used in the presence of an amplitude-dependent
loss factor m+0), it will give only an “apparent” loss factor.
The error so introduced may be determined from the ratio of Egs.

Amplitude

2 (6) and(7), or
0 nrrue! Mapparent= V12— 1112 =™, (8)
0.95 1 1.05

Frequency (Dimensionless) Values of m in the range of 0 to 1 are of particular interest as it

Fig. 1 Frequency response with bandwidths at 50% power and has been obse:rveEB], that Commor,]\‘ ma.te“als typlcally dissipate
80% power energy according to the for@=Jo", with N falling between 2
and 3 at the values of stress normally allowed in design. As the
stored energy is proportional to the square of stress, it follows that
the ratio of dissipated to stored energy, and the loss factor for such

Then, iff, andf, denote the dimensionless frequencies where tﬁ’gaterials will have amplitude dependence with a power between 0

amplitude is a fraction,, of the peak amplitude, E43) becomes 2Sgh1\'/a-||—3eesratio given in Eq8) is plotted in Fig. 2 for several

fizz:Li n(AR)‘/llrz—rzm. (5) ; Intu_ition may Ieag_ ont;) t?h expeckt thatl_l?e(tjter rt?stilrgates Ict)ffthe

. . . o ) mping corresponding to the peak amplitude should result from
This bandwidth relationship is most neatly expressed in terms Qgseevz-?tions mgde clo%er to thgt resongnt peak. Figure 2 demon-
the difference of squared frequencies, or strates that this is not true. Rather, taking observations at larger

W(AR)=(f§—f§)/(2 JIrZ=r2m), (6) yalues ofr a_nd using_ Eq(7) increases the error when damping
increases with amplitude. One should rather take data at lower
For lightly damped systemﬁé—f%:Z(fz—fl), leading(for m  ratios. Forr =0.707 andm=1, the error is of the order of 20%.
=0) to the familiar result for the half-power bandwidth thaf  Not only do the errors increase for larger values dut for the
=7. structural designer they also become less conservative. An over-
estimate of damping in the testing of a material or component can
lead to an overestimate of the damping of the final system, possi-
bly giving rise to unexpectedly large resonant amplitudes in ser-
1+ vice. In choosing a lower value of one must also exercise cau-
tion, as the influence of other modes may be expected to become
more significant as the bandwidth is expanded, and measurement
noise may be come more significant at the lower signal amplitude.
Values ofr of 0.707 and 0.577 have been givdd], as being
commonly used.

Once values of loss factor have been obtained over a range of
amplitudes by using Ed7), the results may be plotted as log loss
factor versus log amplitude. If a straight line provides a reason-
able “fit,” the slope is the appropriate value for the exponent in
Eq. (2) and may be used in E@8) to adjust the original results.
But, since the necessary correction is smaller for lower values of
r, and since the quality of results should improve with the con-
comitant larger frequency differendsubject to possible influ-
ences of other modes and a lower signal/noise xdtaver values
of r are still to be preferred over higher.

09

08

True/Apparent Loss Factor

0.7

0 0.25 05 075 1 References

r- Amplltude Ratlo [1] Ewins, D. J., 1984Modal Testing: Theory and Practicdohn Wiley and Sons,
New York, p. 188.

[2] Jones, D. I. G., 2001Handbook of Viscoelastic Vibration Dampingohn

-==--026——056~----0.756 ——1 Wiley, Chichester, UK, pp. 16, 208.

[3] Lazan, B. J., 1968amping of Materials and Members in Structural Mechan-

. . . X ics, Pergamon Press, Oxford, UK, p. 135.

Fig. 2 Estimation of measurement errors introduced by non- [4] Plunkett, R., 1979, “Measurement of Dampingstructural DampingASME,

linear damping New York, p. 119.

450 / Vol. 70, MAY 2003 Transactions of the ASME



whereu™ and p™ are, respectively, the displacement and traction
vectors at timet,,,, m=1,2,---,n. Normally, Hp=H}" and G,
=Gp" are not symmetric. When the asymmetric boundary element
method is coupled with the symmetric finite element method the
coupling scheme will not be symmetric. Therefore, the following
symmetrization procedure is used.

A Symmetric Boundary Element
Method/Finite Element

Method Coupling Procedure for
Two-Dimensional Elastodynamic

Problems Multiplying Eq. (1) by G}, andH,, respectively, one can get
n-1 n-1

G.Y. Yu L(DBHun:Lngn+ 21 LSGmrbm_ 21 LgHmnum )
m= =

School of Civil and Structural Engineering, Nanyang
Technological University, Nanyang Avenue,
Singapore 639798

e-mail: cgyyu@ntu.edu.sg

n—-1 n—-1
(LSH)Tpn:LBHun+le LBHanm_mzl LgcTam mo(3)

where L5®=G[Gp, LE"=GlHp, LE"=(Hp)™Hp, LSE™
:G'I[; gml LgHmn:GE Bml LB_(?mn:(HD)TGmn’ LBHmn
In this paper, a symmetric collocation boundary element methad(Hp) "HR". L5® andLp" are symmetric matrices.
(SCBEM)/finite element method (FEM) coupling procedure is Double nodes cannot be used here if the tractions for both of
given and applied to a two-dimensional elastodynamic problerthese two nodes are unknown. For corner points, two nodes with
The use of symmetry for the boundary element method not osigall distance can be used. However, if traction for at least one of
saves memory storage but also enables the employment of efficibatdouble nodes is known, double nodes can also be used. While
symmetric equation solvers. This is especially important for BEM/similar way with double nodes can be used to calcltggeso as
FEM coupling procedure. Compared with the symmetric Galerkii® increase the accuracy.
boundary element method (SGBEM) where double-space integrain order to get the symmetric boundary element method formu-
tion should be carried out, SCBEM is easier and faster. lation ready to be used in BEM/FEM coupling procedure, the
[DOI: 10.1115/1.1571856 whole boundary for the boundary element method domain should
be divided into three partd;;—where displacements are pre-
scribed,I",—where traction components are prescribed and the
boundary element/finite element interfdée Subscript “1,” “2,”
and “i” are used to represent, respectively, the variabled on
I',, andl"; . Applying Egs.(2) and(3) toI'; andl",, respectively,

1 Introduction

The traditional collocation boundary element metli®@@BEM) )
has been proven to be useful and robust. However, some unplec?{%Q gets:
ant features hinder its broader applications. The most pertinent is un
the lack of symmetry for some coefficient matrices, which makes GH GH GH ﬁ
the computer code less efficiency, especially for the boundary el- [Lonn Lo Loily Y
ement method/finite element meth@@EM/FEM) coupling pro- u'
cedure where huge amounts of unknowns often exist in the finite

element method domain. Symmetric Galerkin BERIGBEM) Pl
was first proposed by Sirtofil] for linear elastic analysis, and =[LS% LSS LSE1L P2
then used by many researchers in various applicatj@sf]. One p!
of the main problems for SGBEM is that one has to solve the
hypersingular integrals appeared. Although numerous papers have n-1 pT
been published to deal with the hypersingular integrids; 8], + 2 [LglGlmn Lgle’"” LS%M py'
there are still many spaces that need more research works. The m=1 ' m
double-space integrations can increase the accuracy for SGBEM, Pi
but with a cost of computer time. N1 uf
Through matrix manipulation, symmetric collocation BEM B 2 [LGH”‘” LGHmn | GHmm | ym )
(SCBEM) formulation is derived in this paper. As only one space &, -pu D12 D1i 2
integration is involved and no hypersingularity appears, the Ui
SCBEM/FEM coupling procedure can overcome the defects for n
SGBEM/FEM while maintain its merits. The accuracy and valid- P1
ity for the symmetric coupling procedure are shown in a classical [(LEMHT (LEHT (LEHT p2
example. pf
uy
n
2 Symmetric Coupling Procedure =[Loz Loz Loa g
The traditional collocation boundary element metio@BEM) Ui
formulation for two-dimensional elastodynamic problems can be N1 uf’
iten as{s) + 3 I L L
n-1 n-1 m=1 um
Hpu"=Gpp"+ 2 Gp'p™- 2 Hpu™ (1) I
m=1 m=1 n-1 PT
HGmn HGmn HGm m
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n
u;
GH | GH | GH7l) (N
[Loii Loz Lpil| Y2
uy
n
Py
_1 GG |GG |GG 0
=[Lpii1 Lpiz Lpi pﬁ
Pi
n—1 pT
GGmn GGmn GGm m
+ 2 [LSS™ LSS™ LSS P2
m=1 m
Pi
n—1 UT
GHmn GHmn GHm m
= [LSHA™ LSHm LS uz (6)
m=1 m
Ui
pn
1
GHAT GH\T GH\T1! 0
[(Lp)" (Lpz)' (Lgi) 1§ P2
n
Pi
n
Uy
_riHH  HH | HHq) 0
=[Lpi1 Lpiz Lpi 12
Ui
n—-1 UT
HHmMn HHmn HHmM m
+2 [Lbiz Lpbiz L pii u;
m=1 um
1
n-1 Py
HGmn HGmn HGm m
*E [Lotii  LoTiz Lo7i 1y P2 (7)
m=1 pm
1

Combining Egs(4) to (7) and move all unknowns to the left
one can get

_L66 | GH _L66 | GH

D11 D12 D1i D1i
pl’]
1
GHN\T _ | HH GH\T _ | HH
(Lpy Lpzz (Lpio) Lpai uy
GG GH GG GH n
—Lgit Loiz —Lgi L gii Pi
ul
GH\T _ | HH GH\T _ | HH !
(Lp1i) Lpiz (L) L pii
GH GG
—Lpn Loo
HH _ (1] GH\T n
Lp2: (Lp2) [Ul]
= GH GG n
—Lpi Lpiz P2
HH /] GH\T
Lpoi1 (Lp2i)
o GGmn GGmn GGmn A
Lo Lo Loz m
n—1| _ | HGmn _  HGmn _ | HGmn p1
2 DT21 DT22 DT2i m
+ L GGmn [ GGmn [ GGmn P2
m=1 Dil Di2 Dii p_m
|
HGmn HGmn HGmn
L —LboTi1 —LpTiz —LpTi
r_y GHmn _ | GHmn _ | GHmnq
Lou L5z Logi m
n-1 L HHmn [ HHmn [ HHmn u;
E D21 D22 D2i um
+ _GHmn _| GHmn _| GHmn 2
m=1 Dil Di2 Dii um
|
HHmn HHmMn HHmMn
L Lo Lpiz L pii

®)

Equation(8) can be written in @ more compact form as
ApoX"=Y". 9)
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As bothL5¢ and LA™ are symmetric matrices, the time domain
collocation boundary element method formulation given &yor
(9) is symmetric.

Equation(8) or (9) is the relationship between distributed trac-
tion and displacement, while the finite element method formula-
tion represents the relationship between concentrate nodal load
and displacement. Therefore, in order to couple with the finite
element method the unknown tracti@i in Eq. (8) should be
converted to the equivalent nodal loRd. The same space inter-
polation function is used fop" in the boundary element method
domain and the corresponding tractipp; in the finite element
method domain on the interface. Subscrigt”“represents the
variables in the finite element method domain, to distinguish it
from those variables in the boundary element method domain.
Therefore, the equivalent nodal load vector at tithen the in-
terface can be written as

Rei=Fpg (10)
for the finite element method, and
R'=Fp/ 11)
for the boundary element method.
Using the equilibrium conditiopg; = —p' one can get
pr=F 'R'=—pg=F (—Rg), (12)

' Substituting Eq(12) into Eq.(8), and considering the compatibil-
ity condition, uf;=u', one can get

GG GH GGpE-1 GH
—Lgn Loz —LpgF Lo n
P1
GH\T _ | HH GH\TEp-1 _ | HH
(Lprz Loz (Lpi2) F Lpai us
| GG GH | GG—1 GH —RD
Loit Loiz LoiF L gii o
u .
Fi
GH\T _ | HH GH\Tp-1 _ | HH
(Lpai) Lpiz (Lpi) F L pii
GH GG
_LDll LD12
HH /1 GH\T n
Lp21 (Lp2z (Ul]
GH GG n
—Lpi Lpiz P2
HH _ 1 GH\T
Lpi1 (Lp2i)
r GGmn GGmn GGmn A
Lot Lo Lo "
n-1 —|HGmn _ | HGmn _ | HGmn P
2 DT21 DT22 DT2i m
+ [ GGmn [ GGmn [ GGmn P2
m=1 Dil Di2 Dii pim
HGmn HGmn HGmn
L —LpTin —LpTi2 —LoTi i
r GHmn GHmn GHmnA
_LDll _LD12 _LDli m
n—1 [ HHmn [ HHmn [ HHmn uy
2 D21 D22 D2i um
+ _ | GHmMn _| GHmn _| GHmn 2 (13)
m=1 Dil Di2 Dii ul
HHmMn HHmMn HHmn
L Lo Lbi2 L pii

In order to convert Eq(13) into symmetric form, multiplying its
third row by —(F~1)T, one can get
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_1 GG GH GGE-1 GH
I‘Dll I‘D12 I‘DliF I‘Dli n

wsy o —um —asEr o o |
(FHTLES —(FHLSE —(FHTLESF T —(FHTLEH| | RE
gt - —agher g LR
_LSIH:L Lgfz Lglelmn Lgfzmn |-(Dafimn m
Loz (DT |[u) |  —Lowt -Lpes" ~Lpw" b1
(FHTLEH  —(FHTLES | (P2 2 —(FHTLEE™ —(FHTLES™ —(FHTLgemn Sifn
Lo — (L))" ~Lpri" ~LpTiz" —Lomi"
S L+
S D I ”
=1 [ (FHTLER™  (FHTLER™ (R OTLE™ || ym
R

As all unknowns are on the left-hand side, Etg) is the sym- u; and the stress componemt;; at point D(a/2,b/2) from
metric boundary element method formulation which can be us&CBEM/FEM. The parametgs=c,At/L; was kept constant and

directly to couple with the finite element method. equal to 0.6 in the analyses. Comparing with the analytical results,
one can see that reasonable results can be obtained from the
3 Numerical Example SCBEM/FEM procedure given in this paper for elastodynamic
. - . roblems.
The example depicted in Fig. 1, presented previously by Maﬁ-

sur[9], consists of a one-dimensional rod under a Heaviside-type .
forcing function, and has been chosen to be analyzed by SCBEft/ Conclusions

FEM scheme. The displacements,andu,, were assumed to be  SCBEM/FEM coupling procedure has been given and applied
zero atx; =0, and the tractions were also taken as nulkat0 to a two-dimensional elastodynamic problem. Symmetry of coef-
and x,=b, for any timet. At x,=a and t=0, a load p; ficient matrix can save up to 50% memory storage, and enable the

=pH(t-0) was suddenly applied and kept constant until the ergployment of efficient symmetric computation techniques that
of the analysi4E is the Young’s modulus, Poisson coefficient was

considered null 128 finite elements and 32 boundary elements
with the lengthL; were used to discretize each half into which the Numerical result — = Analvtical result
domain was subdividetsee Fig. 1L 1.2 L

Figures 2 show time histories of the displacement compone |
pa 0.8
X 0.6 1
4
p=p2=0 0
o 0.2 1
_| |- 8,
p - 0.0 - - . . : \ otla
Ny e D — 2| s 0 2 4 6 8 10 12
M | = )
5 | | - E (a) displacement u
- o &y
1 p=py=0 -
X1 ~— Numerical result ~ T Analytical result
a=2b 25
Oii.
@) p 20 1 1
1.5 1
y N
0.5
FEM BEM I
= 0.0 1 1 LY ct/a
v - ‘ !
2 4 6 8 10 12
-0.5
®) (b) stress oy,
Fig. 1 One-dimensional rod under a Heaviside-type forcing Fig. 2 Time histories for the response at point D(al2,b/2) from
function: topology, load, and discretization SCBEM/FEM procedure for B=0.6 and #=1.4
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can subsequently save the computer time, especially for the cauch phenomena as rock comminution, the milling of powders,
pling procedure. There is no restriction for the SCBEM/FEM couhard particle impact of ceramic and ceramic composite structures,
pling procedure; it can be easily applied to scalar wave probleraad the penetration of ceramic armour. When a brittle material is

and three-dimensional problems. under high-rate deformation, large stresses are generated in a rela-
tively short time. Thus, many cracks are nucleated and they propa-
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It is important to understand the mechanisms of dynamic dam-
age and fragmentation. A lot of theoretical models intended to

H i i i correlate the features of dynamic fracture and fragmentation have
Dynamlc Fracture in Brittle Solids at been suggested. Shockey et[8l} have developed models based

ngh Rates of Loadlng on the activation, growth, and coalescence of inherent distribu-
tions of fracture-producing flaws, predicting crack and fragment
size spectra resulting from blast loading. Grady and Kiplgpre-
Y.-Q. Zhang sented a description of dynamic fracture and fragmentation of
Protective Technology Research Center, School of Civil rock mass with emphasis on the strain-rate dependence of mea-

nd Environmental Enaineerina. Nanvan surable fra_cture properties. Taylor et 8] developed ade_lmage
and onmenta gineering, Nanyang model to simulate stress-wave-induced rock fracture during blast-

Technological University, Singapore 639798 ing based on the analysis of cracked systems on a continuum
level. In the continuum model$4,5] it is assumed that microc-

H. Hao racks initiate and grow immediately when the strain becomes ten-

Department of Civil and Resource Engineering, sile. Based on energy balance principles, many models which pro-

vide a rational basis for prediction of fragment size in a
fragmentation event have been develogdéd;8|.

In this paper, a constitutive model for the dynamic damage and
fragmentation of brittle materials is presented. The damage in the
model is assumed to be isotropic and is a function of time and
This paper presents a dynamic damage model for predicting fraapplied stress. The model provides a direct, explicit, and quanti-
ture and fragmentation of brittle materials subjected to loads wittative method to determine the rate-dependent fracture stress and
high loading rates. This model is based on the mechanics of rfiagment size generated by crack coalescence in the dynamic frag-
crocrack nucleation, growth, and coalescence to formulate thmentation process. It takes account of the experimental facts that
evolution of damage. The damage in the model is assumed todberittle material does not fail if the applied stress is lower than its
isotropic and is a function of time and applied stress. The modstfatic strength and certain time duration is needed for fracture to
provides a direct, explicit, and quantitative method to determirnteake place when it is subjected to a stress higher than its static
the rate-dependent fracture stress and fragment size generatedsbyength.
crack coalescence in the dynamic fragmentation process. It con-
siders the experimental facts that a brittle material does not fail E Damage
the applied stress is lower than its static strength and certain time
duration is needed for fracture to take place when it is subjected Microscopic crack growth results in stiffness and strength deg-
to a stress higher than its static strength. Comparisons betwegaflation of loaded structures, which is measured by the introduc-

theoretical predictions and test data are made and shown to betiAn into the constitutive equations of a damage variable. For iso-
good agreement[DOI: 10.1115/1.1571854 tropic damage, it will be defined as a scalar parameterhen in

accordance with the strain equivalence principle, the stress-strain
relation can be expressed as

1 Introduction o=E(1-D)e 1)

The dynamic fracture and fragmentation of brittle materials h%‘nereE is the Young's modulus for the undamaged virgin mate-
a wide range of physical relevance including, but not limited %ial o is a tensile stress. andis a tensile strain

Grady and Kipp 4] followed Walsh’s approximate microstruc-
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februanﬁjefmed the scalar variable of the dam&yi terms of the volume

5, 2002, final revision, July 26, 2002. Associate Editor: K. Ravi-Chandar. of idealized penny-shaped cracks in the material as
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D=NV @)

where N is the number of cracks per unit volume and 100-:
=4/37r® is the spherical region surrounding the penny-shape ]
crack of radiusr which approximates the stress-relieved volume__ ]
due to the traction-free boundary of the crack. s

As certain time duration is needed for fracture to take plac% :
when a brittle material is subjected to a stress higher than its sta7,
strength, the evolution of damage can be determined by the nu§

ber of cracks which activate at the times follows: B .

. [~

D(t)=J N(s)V(t—s)ds ?3) g i

te uﬁ; Theoretical predictions
wheret, is the time duration needed for the tensile straito ®  Experimental results
reach the critical value.,=o¢/E, in which oy, is the static
tensile strength, and the crack density increase 10 i . - .

N=a<8—8 )B 4) 10 100 1000 10000
cr

which is similar to that defined by Yang et &10]. In Eq. (4), the Strain rate (1/sec)

angular bracket-) denotes that the function is defined ky)
=(|x|+x)/2, anda and 3 are material parameters.

As for the volumeV(t—s), it is determined by a microstruc-
tural law for the growth of cracks, which are activated at past
time s,

Fig. 1 Fracture stress for different values of applied strain rate

éé/(ﬁ+4)l (11)

Dp| U+
W)

4 4 UFZ(]-*DF)(731+E(1*DF)(
V(t—s)=§wr3=§wcg(t—s)3, (5)

Dependence of the fracture stress on strain rate is provided by the
. . above equation. Since fracture stress for many brittle materials
wherec, is the crack growth velocity and generally-@y<c; (¢ gch as rock and concrete depends on the cube root of the strain

is the elastic wave spegd8]. 711 K | -
The derivative of Eq(5) is based on the assumption that a%ilf'[ 11, 5 can be taken as equal to 8. Combining H@.and

soon as cracks activate, the growth velocity reacbgsvery

quickly. Thus substituting Eq$4) and (5) into Eq. (3), we have De.,[ E(1-Dg) P4

a=—pl — =8 (12)
n o= (1-Dg)og
4 5! 3 h
D(t)=§(17TCg t<8—acr>’5(t—3) ds. (6) Wwnere
¢ 8mcd

n= 9 . (13)

A simple example is the case with a constant strain loading rate, (B+1)(B+2)(B+3)(B+4)

I.e.,e(t)=&ot, wheres, is a constant strain rate. Substituting this Eragments are associated with crack initiation, propagation and
into Eq. (6) gives an expression for damage growth coalescence, thus it is necessary to know the crack size in order to

4 t predict the fragment size. For this reason, the damage defined by
D(t)= §awcg'sgf (sftc)ﬁ(tfs)e’ds: m'gg(tftc)ﬁ+4 (7) Eq.(3) is given in terms of the distribution of crack size
te

where the relatiot.= e, /g is used, and

87703& 0.1
m= : ®)
(B+L)(B+2)(B+3)(B+4)
which is seen to be a constant, depending on the mater
properties.
g 0.01-E
3 Fracture Stress and Fragment Size Predictions g
If the tensile strain and damage scalar corresponding to t'&
fracture stresgrg are denoted by andDg, respectively, from g
Eq. (1) we have 0 1E-3 4
& ] Theoretical predictions
or=(1—Dg)Eeg 9) ] ®  Experimental results
where eg=¢gotg, andtg is the total time to reach the fracture
stress. From Eq.7),
D 1/(ﬁ+4) 1E—4 T LA S S ) T T Ty v
tF_tc:(FF) B P, (10) 10 100 1000 10000

. . ) ) Strain rate (1/sec)
Combining Eqgs.(9) and (10), and using the relatios., = ¢&ot.,

the fracture stress at a certain strain rate in uniaxial tensile canfmg. 2 Dominant fragment size for different values of applied
obtained as strain rate
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Fig. 3 Stress versus strain over three orders of magnitude of Fig. 4 Fragment distributions corresponding to different con-
strain rate stant strain rates
This is the expression for the dependence of dominant fragment
Cylt—te) size on the strain rate.
D(t)= w(r,t)dr (14)
0 . .
4  Application
where In this section, the response of oil shale with kerogen content
r3 » approximately 80 ml/kg subjected to a tensile stress is studied to
o(r,)=—= asf(t—t—rlcy)? (15)  verify the above theoretical derivations. The representative prop-
g erties of 80 ml/kg oil shale are: elastic modulis- 18 GPa, den-
is the damage or crack volume fraction distribution. sity p=2.0 Mg/n?, and elastic wave speed of=23.0 km/s,[4].
Fragmentation is defined to occur when the damage In this study, the static tensile strength is assumed to be 5 MPa.
D(t)=1 16 Using the above oil shale properties, the material parameters in
(t)=1, (16) the model will be determined for oil shale. The parameieis

which corresponds to fracture coalescence at timeAt fracture taken to be equal to 8 so that the fracture stress is cube root
coalescence it is assumed that the fragment sides are formeddgpendent on the loading rate. According to the numerical inves-
the fracture faces. Noting that the crack radiusL/2 with L tigations and some test results of brittle materials under high rate

being the nominal fragment size, the fragment size distributid@ading, [10,12, the damage value is about 0.22 when the dy-
can be obtained as follows: namic tensile stress reaches the dynamic failure stress. If the strain

rate of quasi-static experiments is assumed to beé/B&c and the
1 crack growth velocitycy is 1300 m/sec as adopted by Grady and
F(L)= s w(L/2t;). (17) Kipp [4], the corresponding value of the parametecalculated
z by Eq.(12) is about 8.8% 10°¥msec.
Thus from Egs(11) and(21), the fracture stress and the frag-

Combining Egs(15) and(17), we have ment size can be predicted by using the determined parameters.
The theoretical predictions are compared with the experimental

mal® 4 data provided by Grady and Kipp4], which is, respectively,
F(L)= Tcgso[tf_tc_ L/(2cy)1”. (18)  shown in Fig. 1 and Fig. 2. As can be seen, the predicted values of

the fracture stress and the dominant fragment sizes agree reason-
It is evident that the fragment size distribution is also dependeaitly well with the test data.
on the strain rate. To determine the dependence on the strain ratBigure 3 shows the stress-strain relation for the oil shale over
of the dominant fragment siZéragment size corresponding to thethree orders of magnitude of the strain rate. It can be seen that the
largest volume fraction of materjathe fragment size distribution peak stress before strain softening increases with the strain rate.

F(L) can be maximized with respect to the fragment dizé is Fragment distributions calculated from E@.8) for the three
found that the fragment size distributidf(L) has a maximum constant strain rates are shown in Fig. 4. Fragment sizes at the
when highest strain rate of fsec are very small with a dominant size
6c of about 0.63 mm. On the other hand, at the lowest strain rate of
Lm:,BTgS(tf_tC)' (19) 10%/sec the dominant fragment size is about 13.6 mm.
Combining Egs(7) and(16) gives 5 Conclusions
ti—t.= mfl/(B+4)éaﬁ/(,B+4) . (20) A model for dynamic damage and fragmentation o_f brittle ma-
terials has been developed. It emphasizes the strain-rate depen-
Substituting Eq(20) into Eqg. (19), we have dence of measurable fracture properties such as the fracture
6 strength and fragment s_ize. The r_nodel considt_er_s the foIIc_)wing
L, 0Cq m71/<g+4)é6,3/(5+4) _ 1) experimental factq1) a brittle material does not fail if the applied

:,3+ 3 stress is lower than its static strengt®) when a brittle material is

456 / Vol. 70, MAY 2003 Transactions of the ASME



subjected to a stress higher than its static strength a certain timig] Grady, D. E., and Kipp, M. E., 1980, “Continuum Modelling of Explosive

duration is needed so that the fracture can take place. irla7cttir5e?in QOil Shale,” Int. J. Rock Mech. Min. Sci. Geomech. Ab4fr,, pp.
This mOdel IS essentla”y based on the mechanics of mlcr_ocrac | Taylor, L. M., Chen, E. P., and Kuszmaul, J. S., 1986, “Micro-crack Induced

nucleation, growth and CF’a|ence .tO formulgtg the eVOIu“.Oh .Of Damage Accumulation in Brittle Rock Under Dynamic Loading,” Comput.

damage. The model provides a direct, explicit, and quantitative ethods Appl. Mech. Eng55, pp. 301-320.

method to determine the rate-dependent fracture strength and frags] Grady, D. E., 1988, “The Spall Strength of Condensed Matter,” J. Mech. Phys.

ment size generated by crack coalescence in the dynamic frag- Solids,36, pp. 353-358.

mentation process. The theoretical predictions are compared withf] Liu. L., and Katsabanis, P. D., 1997, “Development of a Continuum Damage

the experimental data, and it is found that the predicted values of _ Model for Blasting Analysis,” Int. J. Rock Mech. Min. ScB4, pp. 217-231.

. . | Miller, O., Freund, L. B., and Needleman, A., 1999, “Modelling and Simula-
the fracture stress and the dominant fragment sizes agree reason-; “ . Dynamic Fragmentation in Britle Materials,” Int. J. Frac6, pp.

ably well with the test results. 101-125.
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